Lecture 05: Private-key Encryption
(Definition & Security of One-time Pad)
Three algorithms

- Key Generation: Generate the secret key sk
- Encryption: Given the secret key sk and a message m, it outputs the cipher-text c (Note that the encryption algorithm can be a randomized algorithm)
- Decryption: Given the secret key sk and the cipher-text c, it outputs a message m' (Note that the decryption algorithm can be a randomized algorithm)
Yesterday Alice and Bob met and generated a secret key
\(sk \sim \text{Gen()} \)
- Read as: the secret key \(sk \) is sampled according to the
distribution \(\text{Gen()} \)

Today Alice wants to encrypt a message \(m \) using the secret
key \(sk \). Alice encrypts \(c \sim \text{Enc}_{sk}(m) \)
- Read as: the cipher-text \(c \) is sampled according to the
distribution \(\text{Enc}_{sk}(m) \)

Then Alice sends the cipher-text \(c \) to Bob. An eavesdropper
gets to see the cipher-text \(c \)

After receiving the cipher-text \(c \) Bob decrypts it using the
secret key \(sk \). Bob decrypts \(m' \sim \text{Dec}_{sk}(c) \)
- Read as: the decoded message \(m' \) is sampled according to the
distribution \(\text{Dec}_{sk}(c) \)
Correctness

- We want the decoded message obtained by Bob to be identical to the original message of Alice with high probability.
- We insist

\[P[M = M'] = 1 \]

- Recall we use capital alphabets to represent the random variable corresponding to the variable (so, \(M \) is the random variable for the message encoded by Alice and \(M' \) is the random variable for the message recovered by Bob).
- We want to say that the cipher-text c provides the adversary no additional information about the message.
- We insist that, for all message m, we have

$$P[M = m | C = c] = P[M = m]$$
Suppose we insist only on correctness and not on security

- The trivial scheme where $\text{Enc}_{sk}(m) = m$, i.e. the encryption of any message m using any secret key sk is the message itself, satisfies correctness. But is completely insecure!

Suppose we insist only on security and not on correctness

- The trivial scheme where $\text{Enc}_{sk}(m) = 0$, i.e. the encryption of any message m using any secret key sk is 0, satisfies this security. But Bob cannot correctly recover the original message m with certainty!

So, the non-triviality is to simultaneously achieve correctness and security
One-time Pad

- Let \((G, \circ)\) be a group

- Secret-key Generation:

 \[
 \text{Gen()} : \\
 \quad \text{Return } sk \leftarrow G
 \]

- Encryption:

 \[
 \text{Enc}_{sk}(m) :
 \quad \text{Return } c := m \circ sk
 \]

- Decryption:

 \[
 \text{Dec}_{sk}(c) :
 \quad \text{Return } m' := c \circ \text{inv}(sk)
 \]

- Note that Encryption and Decryption is deterministic

- The only randomized step is the choice of \(sk\) during the secret-key generation algorithm
Correctness of One-time Pad

- It is trivial to see that

\[P [M = M'] = 1 \]

- So, one-time pad is correct!
We want to simplify the probability\[P[M = m | C = c] \]

Using Bayes’ Rule, we have\[= \frac{P[M = m, C = c]}{P[C = c]} \]

Using the fact that \[P[C = c] = \sum_{x \in G} P[M = x, C = c] \], we get\[= \frac{P[M = m, C = c]}{\sum_{x \in G} P[M = x, C = c]} \]
We will prove the following claim later

Claim

For any $x, y \in G$, we have

$$P[M = x, C = y] = P[M = x] \cdot \frac{1}{|G|}$$

Using this claim, we can simplify the expression as

$$P[M = m] \cdot \frac{1}{|G|} = \frac{P[M = m]}{\sum_{x \in G} P[M = x] \cdot \frac{1}{|G|}}$$

$$= \frac{P[M = m]}{\sum_{x \in G} P[M = x]}$$
Using the fact that \(\sum_{x \in G} \Pr[M = x] = 1 \), we get that the previous expression is

\[
= \Pr[M = m]
\]

This proves that \(\Pr[M = m | C = c] = \Pr[M = m] \), for all \(m \) and \(c \). This proves that the one-time pad encryption scheme is secure!
Proof of Claim 1

- You will prove the following statement in the homework: If there exists sk such that $x \circ sk = y$ then sk is unique (i.e., there does not exist $sk' \neq sk$ such that $x \circ sk' = y$)
- Using this result, we get the following. Suppose $z \in G$ be the unique element such that $x \circ z = y$. Then we have:

$$P[M = x, C = y] = P[M = x, SK = z]$$

- Note that the secret-key is sample independent of the message x. So, we have

$$P[M = x, SK = z] = P[M = x] \cdot P[SK = z]$$

- Note that sk is sampled uniformly at random from the set G. So, we have

$$P[M = x, SK = z] = P[M = x] \cdot \frac{1}{|G|}$$
Example I

- Encrypting bit messages
 - Consider \((G, \circ) = (\mathbb{Z}_2, + \ mod \ 2)\)
Encrypting n-bit strings

- Consider $G = \{0, 1\}^n$
- Define $(x_1, \ldots, x_n) \circ (y_1, \ldots, y_n) = (x_1 + y_1 \mod 2, \ldots, x_n + y_n \mod 2)$
Example III

- Encrypting an alphabet
 - Consider $G = \mathbb{Z}_{26}$
 - Define \circ as $+ \mod 26$

- You will construct one more scheme in the homework by interpreting the set of alphabets as \mathbb{Z}_{27}^{*}
Example IV

- Encrypting n-alphabet words
 - Consider $G = \mathbb{Z}_{26}^n$
 - Define \circ as the coordinate-wise $+ \mod 26$