Lecture 04: Repeated Squaring
Let \((G, \circ)\) be a group with generator \(g\).

We define \(g^0 = e\), where \(r \in G\) is the identity element of \(G\).

We define \(g^i = \overbrace{g \circ g \circ \cdots \circ g}^{i\text{-times}}\).

For example, the group \((\mathbb{Z}_7^*, \times)\) is generated by 3 but not 2.
Motivation of Efficient Algorithm to Compute Exponentiation

- Suppose p is a prime number that is represented using 1000-bits.
- Note that the number p is in the range $[2^{999}, 2^{1000})$. We shall summarize this by stating that p is roughly (in the order of) 2^{1000}.
- Suppose we are interested to work on the field (\mathbb{Z}_p^*, \times) with generator g.
- Given input $i \in \{0, 1, \ldots, p - 1\}$, we are interested in computing $g^i \in \mathbb{Z}_p^*$.

Repeated Squaring
Exp (i):

1. \(\text{prod} = e \)
2. For index in the range \(\{1, \ldots, i\} \):
 1. \(\text{prod} = \text{prod} \circ g \)
3. Return \(\text{prod} \)

- Note that this algorithm runs the inner loop \(i \) times. The number \(i \) can take values \(\{0, 1, \ldots, p - 2\} \). For example, if \(i \geq 2^{500} \) then the algorithm will run the inner loop more than the number of atoms in the universe. Effectively, the algorithm is useless.
- The algorithm takes \(O(i) \) run-time. The size of the input \(i \) is \(\log i \). So, this algorithm is an exponential time algorithm.
Second Attempt I

Exp (i):

1. If \(i = 0 \): Return \(e \)
2. If \(i \) is even:
 1. \(\alpha = \text{Exp}(i/2) \)
 2. Return \(\alpha \circ \alpha \)
3. If \(i \) is odd:
 1. \(\alpha = \text{Exp}((i - 1)/2) \)
 2. Return \(\alpha \circ \alpha \circ g \)

Note that the argument to Exp becomes smaller by one-bit in recursive call. So, the algorithm performs (at most) 1000 recursive call. This is an efficient algorithm because it runs in time \(O(\log i) \)
A Few Optimizations.

- Testing whether \(i \) is even or not can be performed by computing \(i \& 1 \) (here, \& is the bit-wise and of the binary representation of \(i \) and 1).

- Computing \((i/2) \) when \(i \) is even, or computing \((i - 1)/2 \) when \(i \) is odd can be achieved by \(i \gg 1 \) (that is, right-shift the binary representation of \(i \) by one position).
The code shall look as follows

Exp (i):

1. If $i = 0$: Return e
2. $j \gg 1$
3. If $(i \& 1) == 0$:
 1. $\alpha = \text{Exp}(j)$
 2. Return $\alpha \circ \alpha$
4. else:
 1. $\alpha = \text{Exp}(j)$
 2. Return $\alpha \circ \alpha \circ g$
The algorithm makes recursive calls. Can we further optimize and avoid recursive function calls? That is, can we unroll the recursion into a for loop?
In the following code, we assume that we represent the prime p using t-bits. For example, we were considering $t = 1000$ in the ongoing example. We perform a preprocessing step to compute the following global variables.

Global Preprocessing.

1. For index in the set $\{0, 1, \ldots, t - 1\}$:
 1. If $\text{index} == 0$: $\alpha_{\text{index}} = g$ and $c_{\text{index}} = 1$
 2. Else: $\alpha_{\text{index}} = \alpha_{\text{index}-1} \circ \alpha_{\text{index}-1}$ and $c_{\text{index}} = (c_{\text{index}-1} \ll 1)$

- Note that $\alpha_{\text{index}} = g^{2^\text{index}}$, for all $\text{index} \in \{0, 1, \ldots, t - 1\}$
- Further, note that $c_{\text{index}} = 2^\text{index}$, for all $\text{index} \in \{0, 1, \ldots, t - 1\}$
We shall use the preprocessed data to compute the exponentiation

\[\text{Exp} \left(i \right): \]

1. prod = e
2. For index in the set \{0, 1, \ldots, t - 1\}:
 - If \(i < c_{\text{index}} \): Break
 - If \(i \& c_{\text{index}} \neq 0 \): \(\text{prod} = \text{prod} \circ \alpha_{\text{index}} \)
3. Return prod

Note that the test “the \((1 + \text{index})\)-th bit in the binary representation of \(i \) is 1” is identical to the test \(i \& c_{\text{index}} \neq 0 \)

If this test passes, then \(\text{prod} \) is multiplied by \(\alpha_{\text{index}} = g^{2^{\text{index}}} \)

Prove: This approach correctly calculates \(g^i \)

Note that the runtime is \(O(\log i) \) (that is, the algorithm is efficient)