Lecture 04: Repeated Squaring

- Let (G, \circ) be a group with generator g
- We define $g^{0}=e$, where $r \in G$ is the identity element of G

$$
i \text {-times }
$$

- We define $g^{i}=\overbrace{g \circ g \circ \cdots \circ g}$
- For example, the group $\left(\mathbb{Z}_{7}^{*}, \times\right)$ is generated by 3 but not 2

Motivation of Efficient Algorithm to Compute Exponentiation

- Suppose p is a prime number that is represented using 1000-bits
- Note that the number p is in the range $\left[2^{999}, 2^{1000}\right)$. We shall summarize this by stating that p is roughly (in the order of) 2^{1000}.
- Suppose we are interested to work on the field $\left(\mathbb{Z}_{p}^{*}, \times\right)$ with generator g
- Given input $i \in\{0,1, \ldots, p-1\}$, we are interested in computing $g^{i} \in \mathbb{Z}_{p}^{*}$
$\operatorname{Exp}(i):$
(1) $\operatorname{prod}=e$
(2) For index in the range $\{1, \ldots, i\}$:
(1) $\operatorname{prod}=\operatorname{prod} \circ g$
(3) Return prod
- Note that this algorithm runs the inner loop i times. The number i can take values $\{0,1, \ldots, p-2\}$. For example, if $i \geqslant 2^{500}$ then the algorithm will run the inner loop more than the number of atoms in the universe. Effectively, the algorithm is useless
- The algorithm takes $O(i)$ run-time. The size of the input i is $\log i$. So, this algorithm is an exponential time algorithm
$\operatorname{Exp}(i):$
(1) If $i=0$: Return e
(2) If i is even:
(1) $\alpha=\operatorname{Exp}(i / 2)$
(2) Return $\alpha \circ \alpha$
(3) If i is odd:
(1) $\alpha=\operatorname{Exp}((i-1) / 2)$
(2) Return $\alpha \circ \alpha \circ g$
- Note that the argument to Exp becomes smaller by one-bit in recursive call. So, the algorithm performs (at most) 1000 recursive call. This is an efficient algorithm because it runs in time $O(\log i)$

A Few Optimizations.

- Testing whether i is even or not can be performed by computing i\&1 (here, \& is the bit-wise and of the binary representation of i and 1
- Computing ($i / 2$) when i is even, or computing $(i-1) / 2$ when i is odd can be achieved by $i \gg 1$ (that is, right-shift the binary representation of i by one position)

The code shall look as follows
$\operatorname{Exp}(i):$
(1) If $i=0$: Return e
(2) $j \gg 1$
(3) If $(i \& 1)==0$:
(1) $\alpha=\operatorname{Exp}(j)$
(2) Return $\alpha \circ \alpha$
(4) else:
(1) $\alpha=\operatorname{Exp}(j)$
(2) Return $\alpha \circ \alpha \circ g$
(1) The algorithm makes recursive calls. Can we further optimize and avoid recursive function calls? That is, can we unroll the recursion into a for loop?

Final Attempt I

In the following code, we assume that we represent the prime p using t-bits. For example, we were considering $t=1000$ in the ongoing example.
We perform a preprocessing step to compute the following global variables.

Global Preprocessing.

(1) For index in the set $\{0,1, \ldots, t-1\}$:
(1) If index $=0: \alpha_{\text {index }}=g$ and $c_{\text {index }}=1$
(2) Else: $\alpha_{\text {index }}=\alpha_{\text {index }-1} \circ \alpha_{\text {index }-1}$ and $c_{\text {index }}=\left(c_{\text {index }-1} \ll 1\right)$

- Note that $\alpha_{\text {index }}=g^{2^{\text {index }}}$, for all index $\in\{0,1, \ldots, t-1\}$
- Further, note that $c_{\text {index }}=2^{\text {index }}$, for all index $\in\{0,1, \ldots, t-1\}$

Final Attempt II

We shall use the preprocessed data to compute the exponentiation
Exp (i):
(1) $\operatorname{prod}=e$
(2) For index in the set $\{0,1, \ldots, t-1\}$:
(1) If $\left(i<c_{\text {index }}\right)$: Break
(2) If $\left(i \& c_{\text {index }}\right) \neq 0: \operatorname{prod}=\operatorname{prod} \circ \alpha_{\text {index }}$
(3) Return prod

- Note that the test "the $(1+$ index $)$-th bit in the binary representation of i is 1 " is identical to the test $\left(i \& c_{\text {index }}\right) \neq 0$
- If this test passes, then prod is multiplied by $\alpha_{\text {index }}=g^{2^{\text {index }}}$
- Prove: This approach correctly calculates g^{i}
- Note that the runtime is $O(\log i)$ (that is, the algorithm is efficient)

