
Lecture 04: Repeated Squaring

Repeated Squaring



Recall

Let (G , ◦) be a group with generator g
We define g0 = e, where r ∈ G is the identity element of G

We define g i =

i-times︷ ︸︸ ︷
g ◦ g ◦· · · ◦ g

For example, the group (Z∗
7,×) is generated by 3 but not 2

Repeated Squaring



Motivation of Efficient Algorithm to Compute
Exponentiation

Suppose p is a prime number that is represented using
1000-bits
Note that the number p is in the range [2999, 21000). We shall
summarize this by stating that p is roughly (in the order of)
21000.
Suppose we are interested to work on the field (Z∗

p,×) with
generator g
Given input i ∈ {0, 1, . . . , p − 1}, we are interested in
computing g i ∈ Z∗

p

Repeated Squaring



First Attempt

Exp (i):
1 prod = e
2 For index in the range {1, ..., i}:

1 prod = prod ◦ g
3 Return prod

Note that this algorithm runs the inner loop i times. The
number i can take values {0, 1, . . . , p − 2}. For example, if
i > 2500 then the algorithm will run the inner loop more than
the number of atoms in the universe. Effectively, the algorithm
is useless
The algorithm takes O(i) run-time. The size of the input i is
log i . So, this algorithm is an exponential time algorithm

Repeated Squaring



Second Attempt I

Exp (i):
1 If i = 0: Return e
2 If i is even:

1 α = Exp(i/2)
2 Return α ◦ α

3 If i is odd:
1 α = Exp((i − 1)/2)
2 Return α ◦ α ◦ g

Note that the argument to Exp becomes smaller by one-bit in
recursive call. So, the algorithm performs (at most) 1000
recursive call. This is an efficient algorithm because it runs in
time O(log i)

Repeated Squaring



Second Attempt II

A Few Optimizations.

Testing whether i is even or not can be performed by
computing i&1 (here, & is the bit-wise and of the binary
representation of i and 1

Computing (i/2) when i is even, or computing (i − 1)/2 when
i is odd can be achieved by i � 1 (that is, right-shift the
binary representation of i by one position)

Repeated Squaring



Second Attempt III

The code shall look as follows

Exp (i):
1 If i = 0: Return e

2 j � 1
3 If (i&1) == 0:

1 α = Exp(j)
2 Return α ◦ α

4 else:
1 α = Exp(j)
2 Return α ◦ α ◦ g

Repeated Squaring



Second Attempt IV

1 The algorithm makes recursive calls. Can we further optimize
and avoid recursive function calls? That is, can we unroll the
recursion into a for loop?

Repeated Squaring



Final Attempt I

In the following code, we assume that we represent the prime p
using t-bits. For example, we were considering t = 1000 in the
ongoing example.
We perform a preprocessing step to compute the following global
variables.

Global Preprocessing.
1 For index in the set {0, 1, . . . , t − 1}:

1 If index == 0: αindex = g and cindex = 1
2 Else: αindex = αindex−1 ◦ αindex−1 and cindex = (cindex−1 � 1)

Note that αindex = g2index
, for all index ∈ {0, 1, . . . , t − 1}

Further, note that cindex = 2index, for all
index ∈ {0, 1, . . . , t − 1}

Repeated Squaring



Final Attempt II
We shall use the preprocessed data to compute the exponentiation

Exp (i):
1 prod = e
2 For index in the set {0, 1, . . . , t − 1}:

1 If (i < cindex) : Break
2 If (i&cindex) 6= 0: prod = prod ◦ αindex

3 Return prod

Note that the test “the (1+ index)-th bit in the binary
representation of i is 1” is identical to the test (i&cindex) 6= 0

If this test passes, then prod is multiplied by αindex = g2index

Prove: This approach correctly calculates g i

Note that the runtime is O(log i) (that is, the algorithm is
efficient)

Repeated Squaring


