Lecture 04: Repeated Squaring

Repeated Squaring

★課▶ ★注▶ ★注▶

- Let (G, \circ) be a group with generator g
- We define $g^0 = e$, where $r \in G$ is the identity element of G

• We define
$$g^i = \overbrace{g \circ g \circ \cdots \circ g}^{i}$$

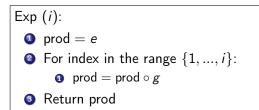
 \bullet For example, the group (\mathbb{Z}_7^*,\times) is generated by 3 but not 2

→ 御 → → 注 → → 注 →

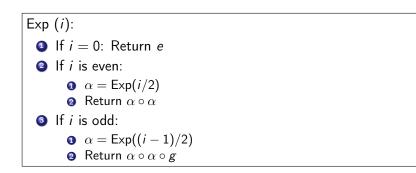
Motivation of Efficient Algorithm to Compute Exponentiation

- Suppose *p* is a prime number that is represented using 1000-bits
- Note that the number p is in the range $[2^{999}, 2^{1000})$. We shall summarize this by stating that p is roughly (in the order of) 2^{1000} .
- Suppose we are interested to work on the field (\mathbb{Z}_p^*, \times) with generator g
- Given input $i \in \{0, 1, \dots, p-1\}$, we are interested in computing $g^i \in \mathbb{Z}_p^*$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・



- Note that this algorithm runs the inner loop *i* times. The number *i* can take values {0, 1, ..., *p* − 2}. For example, if *i* ≥ 2⁵⁰⁰ then the algorithm will run the inner loop more than the number of atoms in the universe. Effectively, the algorithm is useless
- The algorithm takes O(i) run-time. The size of the input *i* is log *i*. So, this algorithm is an exponential time algorithm



 Note that the argument to Exp becomes smaller by one-bit in recursive call. So, the algorithm performs (at most) 1000 recursive call. This is an <u>efficient</u> algorithm because it runs in time O(log i)

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

A Few Optimizations.

- Testing whether *i* is even or not can be performed by computing *i*&1 (here, & is the bit-wise and of the binary representation of *i* and 1
- Computing (i/2) when *i* is even, or computing (i-1)/2 when *i* is odd can be achieved by $i \gg 1$ (that is, right-shift the binary representation of *i* by one position)

(日本) (日本) (日本)

Second Attempt III

The code shall look as follows

Exp (i): a) If i = 0: Return eb) $j \gg 1$ c) If (i&1) == 0: c) $\alpha = \operatorname{Exp}(j)$ c) Return $\alpha \circ \alpha$ c) else: c) $\alpha = \operatorname{Exp}(j)$ c) Return $\alpha \circ \alpha \circ g$

Repeated Squaring

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

• The algorithm makes recursive calls. Can we further optimize and avoid recursive function calls? That is, can we unroll the recursion into a for loop? In the following code, we assume that we represent the prime p using *t*-bits. For example, we were considering t = 1000 in the ongoing example.

We perform a preprocessing step to compute the following global variables.

Global Preprocessing.

• For index in the set
$$\{0, 1, \ldots, t-1\}$$
:

• If index == 0:
$$\alpha_{index} = g$$
 and $c_{index} = 1$

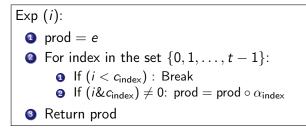
2 Else:
$$\alpha_{index} = \alpha_{index-1} \circ \alpha_{index-1}$$
 and $c_{index} = (c_{index-1} \ll 1)$

- Note that $lpha_{\mathsf{index}} = g^{2^{\mathsf{index}}}$, for all $\mathsf{index} \in \{0, 1, \dots, t-1\}$
- Further, note that $c_{index} = 2^{index}$, for all index $\in \{0, 1, \dots, t-1\}$

(비) (종) (종) (종)

Final Attempt II

We shall use the preprocessed data to compute the exponentiation



- Note that the test "the (1 + index)-th bit in the binary representation of *i* is 1" is identical to the test $(i\&c_{index}) \neq 0$
- $\bullet\,$ If this test passes, then prod is multiplied by $\alpha_{\rm index}={g^{2^{\rm index}}}$
- Prove: This approach correctly calculates gⁱ
- Note that the runtime is $O(\log i)$ (that is, the algorithm is efficient)

▲ 同 ▶ → 目 ▶ → ● ▶ →