Lecture 01: Mathematical Basics (Summations & Probability)

3.5

• I am assuming that you know asymptotic notations. For example, the big-O, little-O notations

• Let us try to write a closed form expression for the following summation

$$S = \sum_{i=1}^{n} 1$$

• It is trivial to see that S = n

э

• Now, let us try to write a closed form expression for the following summation

$$S = \sum_{i=1}^{n} i$$

- We can prove that $S = \frac{n(n+1)}{2}$
 - How do you prove this statement? (Use Induction? Use the formula for the Sum of an Arithmetic Progression?)
- Using Asymptotic Notation, we can say that $S = \frac{n^2}{2} + o(n^2)$

▲□→ ▲目→ ▲目→

• Now, let us try to write a closed form expression for the following summation

$$S = \sum_{i=1}^{n} i^2$$

- We can prove that $S = \frac{n(n+1)(2n+1)}{6}$
 - Why is the expression on the right an integer? (Prove by induction that 6 divides n(n + 1)(2n + 1) for all positive integer n)
 - How do you prove this statement? (Use Induction?)
- Using Asymptotic Notation, we can say that $S = \frac{n^3}{3} + o(n^3)$

- Do we see a pattern here?
- Conjecture: For $k \ge 1$, we have $\sum_{i=1}^{n} i^{k-1} = \frac{n^k}{k} + o(n^k)$.

• How do we prove this statement?

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let f be an increasing function
- For example, f(x) = x^{k-1} is an increasing function for k > 1 and x ≥ 0

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Estimating Summations by Integration II

□ ▶ ▲ 三 ▶ ▲

Estimating Summations by Integration III

- Observation: "Blue area under the curve" is smaller than the "Shaded area of the rectangle"
 - Blue area under the curve is:

$$\int_{x-1}^{x} f(t) dt$$

• Shaded area of the rectangle is:

f(x)

• So, we have the inequality:

$$\int_{x-1}^x f(t) \, \mathrm{d} t \leqslant f(x)$$

• Summing both side from x = 1 to x = n, we get

$$\sum_{x=1}^{n} \int_{x-1}^{x} f(t) dt \leq \sum_{x=1}^{n} f(x)$$

Basics

Estimating Summations by Integration IV

• The left-hand side of the inequality is

$$\int_0^1 f(t) dt + \int_1^2 f(t) dt + \dots + \int_{n-1}^n f(t) dt = \int_0^n f(t) dt$$

• So, for an increasing f, we have the following lower bound.

$$\int_0^n f(t) \, \mathrm{d}t \leqslant \sum_{x=1}^n f(x) \tag{1}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Estimating Summations by Integration V

• Now, we will upper bound the summation expression. Consider the figure below

Estimating Summations by Integration VI

- Observation: "Blue area under the curve" is greater than the "Shaded area of the rectangle"
- So, we have the inequality:

$$\int_{x-1}^{x} f(t) \, \mathrm{d}t \ge f(x-1)$$

- Now we sum the above inequality from x = 2 to x = n + 1
- We get

$$\int_{1}^{2} f(t) dt + \int_{2}^{3} f(t) dt + \dots + \int_{n}^{n+1} f(t) dt \ge f(1) + f(2) + \dots + f(n)$$

• So, for an increasing f, we get the following upper bound

$$\int_{1}^{n+1} f(t) \,\mathrm{d}t \ge \sum_{x=1}^{n} f(x) \tag{2}$$

Basics

Summary: Estimation of Summation using Integration

Theorem

For an increasing function f, we have

$$\int_0^n f(t) \, \mathrm{d}t \leqslant \sum_{x=1}^n f(x) \leqslant \int_1^{n+1} f(t) \, \mathrm{d}t$$

Exercise:

- Use this theorem to prove that $\sum_{i=1}^{n} i^{k-1} = \frac{n^k}{k} + o(n^k)$, for $k \ge 1$
- Consider the function f(x) = 1/x to find upper and lower bounds for the sum H_n = 1 + ¹/₂ + · · · + ¹/_n using the approach used to prove Theorem 1

・ロト ・四ト ・ヨト ・ヨト

Differentiation and Integration

- Differentiation: f'(x) represents the slope of the curve y = f(x) at x
- Integration: $\int_{a}^{b} f(t) dt$ represents the area under the curve y = f(x) between x = a and x = b
- Increasing function:
 - Observation: The slope an increasing function is positive
 - So, "f is increasing at x" is equivalent to "f'(x) > 0," i.e. f' is positive at x
- Suppose we want to mathematically write "Slope of a function *f* is increasing"
 - The "slope of a function f" is the function "f"
 - So, the statement "slope of a function f is increasing" is equivalent to " $(f')' \equiv f''$ is positive"

Definition (Concave Upwards Function)

A function f is concave upwards in the interval [a, b] if f'' is positive in the interval [a, b].

- Example of functions that concave upwards: x², exp(x), 1/x (in the interval (0,∞)), x log x (in the interval (0,∞))
 - We emphasize that a "concave upwards" function need not be increasing, for example f(x) = 1/x (for positive x) is decreasing

- 4 同 2 4 回 2 4 回 2 4

Property of Concave Upwards Function I

- Consider the coordinates (x 1, f(x 1)) and (x, f(x))
- For a concave upwards function, the secant between the two coordinates is always (on or) above the part of the curve *f* between the two coordinates

Property of Concave Upwards Function II

• So, the shaded area of the trapezium is greater than the blue area under the curve

• So, we get
$$rac{f(x-1)+f(x)}{2} \geqslant \int_{x-1}^x f(t) \, \mathrm{d}t$$

- Now, use this new observation to obtain a better lower bound for the sum $\sum_{x=1}^{n} f(x)$
- Think: Can you get even tighter bounds?
- Additional Reading: Read on the "trapezoidal rule"

- Sample Space: Ω is a set of outcomes (it can either be finite or infinite)
- Random Variable: X is a random variable that assigns probabilities to outcomes

Example: Let $\Omega = \{\text{Heads}, \text{Tails}\}$. Let X be a random variable that outputs Heads with probability 1/3 and outputs Tails with probability 2/3

• The probability that $\mathbb X$ assigns to the outcome x is represented by

$$\mathbb{P}\left[\mathbb{X}=x\right]$$

Example: In the ongoing example $\mathbb{P}\left[\mathbb{X} = \text{Heads}\right] = 1/3$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let $f: \Omega \to \Omega'$ be a function
- $\bullet\,$ Let $\mathbb X$ be a random variable over the sample space $\mathbb X$
- We define a new random variable f(X) is over Ω' as follows

$$\mathbb{P}\left[f(\mathbb{X})=y\right]=\sum_{x\in\Omega:\ f(x)=y}\mathbb{P}\left[\mathbb{X}=x\right]$$

- Suppose (X_1, X_2) is a random variable over $\Omega_1 \times \Omega_2$.
 - Intuitively, the random variable (X₁, X₂) takes values of the form (x₁, x₂), where the first coordinate lies in Ω₁, and the second coordinate likes in Ω₂

For example, let (X_1, X_2) represent the temperatures of West Lafayette and Lafayette. Their sample space is $\mathbb{Z} \times \mathbb{Z}$. Note that these two outcomes can be correlated with each other.

Joint Distribution and Marginal Distributions II

- Let $P_1: \Omega_1 \times \Omega_2 \to \Omega_1$ be the function $P_1(x_1, x_2) = x_1$ (the projection operator)
- So, the random variable P₁(X₁, X₂) is a probability distribution over the sample space Ω₁
- $\bullet\,$ This is represented simply as $\mathbb{X}_1,$ the marginal distribution of the first coordinate
- Similarly, we can define \mathbb{X}_2

Conditional Distribution

- Let $(\mathbb{X}_1,\mathbb{X}_2)$ be a joint distribution over the sample space $\Omega_1\times\Omega_2$
- $\bullet\,$ We can define the distribution $(\mathbb{X}_1\mid\mathbb{X}_2=x_2)$ as follows
 - $\bullet\,$ This random variable is a distribution over the sample space Ω_1
 - The probability distribution is defined as follows

$$\mathbb{P}\left[\mathbb{X}_1 = x_1 \mid \mathbb{X}_2 = x_2\right] = \frac{\mathbb{P}\left[\mathbb{X}_1 = x_1, \mathbb{X}_2 = x_2\right]}{\sum_{x \in \Omega_1} \mathbb{P}\left[\mathbb{X}_1 = x, \mathbb{X}_2 = x_2\right]}$$

For example, conditioned on the temperature at Lafayette being 0, what is the conditional probability distribution of the temperature in West Lafayette?

Theorem (Bayes' Rule)

Let $(\mathbb{X}_1, \mathbb{X}_2)$ be a joint distribution over the sample space (Ω_1, Ω_2) . Let $x_1 \in \Omega_1$ and $x_2 \in \Omega_2$ be such that $\mathbb{P}[\mathbb{X}_1 = x_1, \mathbb{X}_2 = x_2] > 0$. Then, the following holds.

$$\mathbb{P}\left[\mathbb{X}_1 = x_1 \mid \mathbb{X}_2 = x_2\right] = \frac{\mathbb{P}\left[\mathbb{X}_1 = x_1, \mathbb{X}_2 = x_2\right]}{\mathbb{P}\left[\mathbb{X}_2 = x_2\right]}$$

The random variables \mathbb{X}_1 and \mathbb{X}_2 are independent of each other if the distribution $(\mathbb{X}_1 \mid \mathbb{X}_2 = x_2)$ is identical to the random variable \mathbb{X}_1 , for all $x_2 \in \Omega_2$ such that $\mathbb{P}[\mathbb{X}_2 = x_2] > 0$ We can generalize the Bayes' Rule as follows.

Theorem (Chain Rule)

Let $(X_1, X_2, ..., X_n)$ be a joint distribution over the sample space $\Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$. For any $(x_1, ..., x_n) \in \Omega_1 \times \cdots \times \Omega_n$ we have

$$\mathbb{P}\left[\mathbb{X}_1 = x_1, \dots, \mathbb{X}_n = x_n\right] = \prod_{i=1}^n \mathbb{P}\left[\mathbb{X}_i = x_i \mid \mathbb{X}_{i-1} = x_{i-1}, \dots, \mathbb{X}_1 = x_1\right]$$

In which context do we foresee to use the Bayes' Rule to compute joint probability?

• Sometimes, the problem at hand will clearly state how to sample X_1 and then, conditioned on the fact that $X_1 = x_1$, it will state how to sample X_2 . In such cases, we shall use the Bayes' rule to calculate

$$\mathbb{P}\left[\mathbb{X}_1 = x_1, \mathbb{X}_2 = x_2\right] = \mathbb{P}\left[\mathbb{X}_1 = x_1\right]\mathbb{P}\left[\mathbb{X}_2 = x_2|\mathbb{X}_1 = x_1\right]$$

• Let us consider an example.

• Suppose \mathbb{X}_1 is a random variable over $\Omega_1 = \{0, 1\}$ such that $\mathbb{P}[X_1 = 0] = 1/2$. Next, the random variable \mathbb{X}_2 is over $\Omega_2 = \{0, 1\}$ such that $\mathbb{P}[X_2 = x_1 | \mathbb{X}_1 = x_1] = 2/3$. Note that \mathbb{X}_2 is biased towards the outcome of \mathbb{X}_1 .

• What is the probability that we get $\mathbb{P}\left[\mathbb{X}_1=0,\mathbb{X}_2=1\right]?$

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・

• To compute this probability, we shall use the Bayes' rule.

$$\mathbb{P}\left[\mathbb{X}_1=0\right]=1/2$$

Next, we know that

$$\mathbb{P}\left[\mathbb{X}_2=0|\mathbb{X}_1=0\right]=2/3$$

Therefore, we have $\mathbb{P}\left[\mathbb{X}_2=1|\mathbb{X}_1=0\right]=1/3.$ So, we get

$$\begin{split} \mathbb{P}\left[\mathbb{X}_1 = 0, \mathbb{X}_2 = 1\right] &= \mathbb{P}\left[\mathbb{X}_1 = 0\right] \mathbb{P}\left[\mathbb{X}_2 = 1 | \mathbb{X}_1 = 0\right] \\ &= (1/2) \cdot (1/3) = 1/6 \end{split}$$

イロト イポト イヨト イヨト

- Let S be the random variable representing whether I studied for my exam. This random variable has sample space $\Omega_1 = \{Y, N\}$
- Let \mathbb{P} be the random variable representing whether I passed my exam This random variable has sample space $\Omega_2 = \{Y, N\}$
- Our sample space is $\Omega=\Omega_1\times\Omega_2$
- The joint distribution (\mathbb{S},\mathbb{P}) is represented in the next page

Probability: First Example II

5	р	$\mathbb{P}\left[\mathbb{S}=s,\mathbb{P}=p ight]$
Y	Y	1/2
Y	Ν	1/4
Ν	Y	0
Ν	Ν	1/4

э

・ロト ・部ト ・ヨト ・ヨト

Here are some interesting probability computations The probability that I pass.

$$\begin{split} \mathbb{P}\left[\mathbb{P}=\mathsf{Y}\right] &= \mathbb{P}\left[\mathbb{S}=\mathsf{Y}, \mathbb{P}=\mathsf{Y}\right] + \mathbb{P}\left[\mathbb{S}=\mathsf{N}, \mathbb{P}=\mathsf{Y}\right] \\ &= 1/2 + 0 = 1/2 \end{split}$$

The probability that I study.

$$\mathbb{P}\left[\mathbb{S} = \mathsf{Y}\right] = \mathbb{P}\left[\mathbb{S} = \mathsf{Y}, \mathbb{P} = \mathsf{Y}\right] + \mathbb{P}\left[\mathbb{S} = \mathsf{Y}, \mathbb{P} = \mathsf{N}\right]$$
$$= 1/2 + 1/4 = 3/4$$

The probability that I pass conditioned on the fact that I studied.

$$\mathbb{P}\left[\mathbb{P} = \mathsf{Y} \mid \mathbb{S} = \mathsf{Y}\right] = \frac{\mathbb{P}\left[\mathbb{P} = \mathsf{Y}, \mathbb{S} = \mathsf{Y}\right]}{\mathbb{P}\left[\mathbb{S} = \mathsf{Y}\right]}$$
$$= \frac{1/2}{3/4} = \frac{2}{3}$$

∃ ► < ∃ ►</p>

- Let \mathbb{T} be the time of the day that I wake up. The random variable \mathbb{T} has sample space $\Omega_1 = \{4, 5, 6, 7, 8, 9, 10\}$
- Let $\mathbb B$ represent whether I have breakfast or not. The random variable $\mathbb B$ has sample space $\Omega_2=\{\mathsf{T},\mathsf{F}\}$
- Our sample space is $\Omega=\Omega_1\times\Omega_2$
- The joint distribution of (\mathbb{T}, \mathbb{B}) is presented on the next page

Probability: Second Example II

t	b	$\mathbb{P}\left[\mathbb{T}=t,\mathbb{B}=b ight]$
4	Т	0.03
4	F	0
5	Т	0.02
5	F	0
6	Т	0.30
6	F	0.05
7	Т	0.20
7	F	0.10
8	Т	0.10
8	F	0.08
9	Т	0.05
9	F	0.05
10	Т	0
10	F	0.02

'문▶' ★ 문

• What is the probability that I have breakfast conditioned on the fact that I wake up at or before 7?

Formally, what is $\mathbb{P}\left[\mathbb{B} = \mathsf{T} \mid \mathbb{T} \leqslant 7\right]$?

★ Ξ →