Lecture 01: Mathematical Basics (Summations \& Probability)

What I am Assuming

- I am assuming that you know asymptotic notations. For example, the big-O, little-O notations
- Let us try to write a closed form expression for the following summation

$$
S=\sum_{i=1}^{n} 1
$$

- It is trivial to see that $S=n$
- Now, let us try to write a closed form expression for the following summation

$$
S=\sum_{i=1}^{n} i
$$

- We can prove that $S=\frac{n(n+1)}{2}$
- How do you prove this statement? (Use Induction? Use the formula for the Sum of an Arithmetic Progression?)
- Using Asymptotic Notation, we can say that $S=\frac{n^{2}}{2}+o\left(n^{2}\right)$
- Now, let us try to write a closed form expression for the following summation

$$
S=\sum_{i=1}^{n} i^{2}
$$

- We can prove that $S=\frac{n(n+1)(2 n+1)}{6}$
- Why is the expression on the right an integer? (Prove by induction that 6 divides $n(n+1)(2 n+1)$ for all positive integer n)
- How do you prove this statement? (Use Induction?)
- Using Asymptotic Notation, we can say that $S=\frac{n^{3}}{3}+o\left(n^{3}\right)$
- Do we see a pattern here?
- Conjecture: For $k \geqslant 1$, we have $\sum_{i=1}^{n} i^{k-1}=\frac{n^{k}}{k}+o\left(n^{k}\right)$.
- How do we prove this statement?
- Let f be an increasing function
- For example, $f(x)=x^{k-1}$ is an increasing function for $k>1$ and $x \geqslant 0$

Estimating Summations by Integration II

Estimating Summations by Integration III

- Observation: "Blue area under the curve" is smaller than the "Shaded area of the rectangle"
- Blue area under the curve is:

$$
\int_{x-1}^{x} f(t) d t
$$

- Shaded area of the rectangle is:

$$
f(x)
$$

- So, we have the inequality:

$$
\int_{x-1}^{x} f(t) d t \leqslant f(x)
$$

- Summing both side from $x=1$ to $x=n$, we get

$$
\sum_{x=1}^{n} \int_{x-1}^{x} f(t) d t \leqslant \sum_{x=1}^{n} f(x)
$$

Estimating Summations by Integration IV

- The left-hand side of the inequality is

$$
\int_{0}^{1} f(t) \mathrm{d} t+\int_{1}^{2} f(t) \mathrm{d} t+\cdots+\int_{n-1}^{n} f(t) \mathrm{d} t=\int_{0}^{n} f(t) \mathrm{d} t
$$

- So, for an increasing f, we have the following lower bound.

$$
\begin{equation*}
\int_{0}^{n} f(t) \mathrm{d} t \leqslant \sum_{x=1}^{n} f(x) \tag{1}
\end{equation*}
$$

Estimating Summations by Integration V

- Now, we will upper bound the summation expression. Consider the figure below

Estimating Summations by Integration VI

- Observation: "Blue area under the curve" is greater than the "Shaded area of the rectangle"
- So, we have the inequality:

$$
\int_{x-1}^{x} f(t) d t \geqslant f(x-1)
$$

- Now we sum the above inequality from $x=2$ to $x=n+1$
- We get

$$
\int_{1}^{2} f(t) \mathrm{d} t+\int_{2}^{3} f(t) \mathrm{d} t+\cdots+\int_{n}^{n+1} f(t) \mathrm{d} t \geqslant f(1)+f(2)+\cdots+f(n)
$$

- So, for an increasing f, we get the following upper bound

$$
\begin{equation*}
\int_{1}^{n+1} f(t) \mathrm{d} t \geqslant \sum_{x=1}^{n} f(x) \tag{2}
\end{equation*}
$$

Theorem

For an increasing function f, we have

$$
\int_{0}^{n} f(t) d t \leqslant \sum_{x=1}^{n} f(x) \leqslant \int_{1}^{n+1} f(t) d t
$$

Exercise:

- Use this theorem to prove that $\sum_{i=1}^{n} i^{k-1}=\frac{n^{k}}{k}+o\left(n^{k}\right)$, for $k \geqslant 1$
- Consider the function $f(x)=1 / x$ to find upper and lower bounds for the sum $H_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}$ using the approach used to prove Theorem 1

Differentiation and Integration

- Differentiation: $f^{\prime}(x)$ represents the slope of the curve $y=f(x)$ at x
- Integration: $\int_{a}^{b} f(t) \mathrm{d} t$ represents the area under the curve $y=f(x)$ between $x=a$ and $x=b$
- Increasing function:
- Observation: The slope an increasing function is positive
- So, " f is increasing at $x^{\prime \prime}$ is equivalent to " $f^{\prime}(x)>0$," i.e. f^{\prime} is positive at x
- Suppose we want to mathematically write "Slope of a function f is increasing"
- The "slope of a function f " is the function " f ""
- So, the statement "slope of a function f is increasing" is equivalent to " $\left(f^{\prime}\right)^{\prime} \equiv f^{\prime \prime}$ is positive"

Concave Upwards Functions

Definition (Concave Upwards Function)

A function f is concave upwards in the interval $[a, b]$ if $f^{\prime \prime}$ is positive in the interval $[a, b]$.

- Example of functions that concave upwards: $x^{2}, \exp (x), 1 / x$ (in the interval $(0, \infty)$), $x \log x$ (in the interval $(0, \infty)$)
- We emphasize that a "concave upwards" function need not be increasing, for example $f(x)=1 / x$ (for positive x) is decreasing
- Consider the coordinates $(x-1, f(x-1))$ and $(x, f(x))$
- For a concave upwards function, the secant between the two coordinates is always (on or) above the part of the curve f between the two coordinates

- So, the shaded area of the trapezium is greater than the blue area under the curve

Property of Concave Upwards Function III

- So, we get

$$
\frac{f(x-1)+f(x)}{2} \geqslant \int_{x-1}^{x} f(t) \mathrm{d} t
$$

- Now, use this new observation to obtain a better lower bound for the sum $\sum_{x=1}^{n} f(x)$
- Think: Can you get even tighter bounds?
- Additional Reading: Read on the "trapezoidal rule"

Probability Basics

- Sample Space: Ω is a set of outcomes (it can either be finite or infinite)
- Random Variable: \mathbb{X} is a random variable that assigns probabilities to outcomes

Example: Let $\Omega=\{$ Heads, Tails $\}$. Let \mathbb{X} be a random variable that outputs Heads with probability $1 / 3$ and outputs Tails with probability $2 / 3$

- The probability that \mathbb{X} assigns to the outcome x is represented by

$$
\mathbb{P}[\mathbb{X}=x]
$$

Example: In the ongoing example $\mathbb{P}[\mathbb{X}=$ Heads $]=1 / 3$.

- Let $f: \Omega \rightarrow \Omega^{\prime}$ be a function
- Let \mathbb{X} be a random variable over the sample space \mathbb{X}
- We define a new random variable $f(\mathbb{X})$ is over Ω^{\prime} as follows

$$
\mathbb{P}[f(\mathbb{X})=y]=\sum_{x \in \Omega: f(x)=y} \mathbb{P}[\mathbb{X}=x]
$$

Joint Distribution and Marginal Distributions I

- Suppose ($\mathbb{X}_{1}, \mathbb{X}_{2}$) is a random variable over $\Omega_{1} \times \Omega_{2}$.
- Intuitively, the random variable ($\mathbb{X}_{1}, \mathbb{X}_{2}$) takes values of the form (x_{1}, x_{2}), where the first coordinate lies in Ω_{1}, and the second coordinate likes in Ω_{2}

For example, let ($\mathbb{X}_{1}, \mathbb{X}_{2}$) represent the temperatures of West Lafayette and Lafayette. Their sample space is $\mathbb{Z} \times \mathbb{Z}$. Note that these two outcomes can be correlated with each other.

Joint Distribution and Marginal Distributions II

- Let $P_{1}: \Omega_{1} \times \Omega_{2} \rightarrow \Omega_{1}$ be the function $P_{1}\left(x_{1}, x_{2}\right)=x_{1}$ (the projection operator)
- So, the random variable $P_{1}\left(\mathbb{X}_{1}, \mathbb{X}_{2}\right)$ is a probability distribution over the sample space Ω_{1}
- This is represented simply as \mathbb{X}_{1}, the marginal distribution of the first coordinate
- Similarly, we can define \mathbb{X}_{2}

Conditional Distribution

- Let $\left(\mathbb{X}_{1}, \mathbb{X}_{2}\right)$ be a joint distribution over the sample space $\Omega_{1} \times \Omega_{2}$
- We can define the distribution ($\mathbb{X}_{1} \mid \mathbb{X}_{2}=x_{2}$) as follows
- This random variable is a distribution over the sample space Ω_{1}
- The probability distribution is defined as follows

$$
\mathbb{P}\left[\mathbb{X}_{1}=x_{1} \mid \mathbb{X}_{2}=x_{2}\right]=\frac{\mathbb{P}\left[\mathbb{X}_{1}=x_{1}, \mathbb{X}_{2}=x_{2}\right]}{\sum_{x \in \Omega_{1}} \mathbb{P}\left[\mathbb{X}_{1}=x, \mathbb{X}_{2}=x_{2}\right]}
$$

For example, conditioned on the temperature at Lafayette being 0 , what is the conditional probability distribution of the temperature in West Lafayette?

Bayes' Rule

Theorem (Bayes' Rule)

Let $\left(\mathbb{X}_{1}, \mathbb{X}_{2}\right)$ be a joint distribution over the sample space $\left(\Omega_{1}, \Omega_{2}\right)$. Let $x_{1} \in \Omega_{1}$ and $x_{2} \in \Omega_{2}$ be such that $\mathbb{P}\left[\mathbb{X}_{1}=x_{1}, \mathbb{X}_{2}=x_{2}\right]>0$. Then, the following holds.

$$
\mathbb{P}\left[\mathbb{X}_{1}=x_{1} \mid \mathbb{X}_{2}=x_{2}\right]=\frac{\mathbb{P}\left[\mathbb{X}_{1}=x_{1}, \mathbb{X}_{2}=x_{2}\right]}{\mathbb{P}\left[\mathbb{X}_{2}=x_{2}\right]}
$$

The random variables \mathbb{X}_{1} and \mathbb{X}_{2} are independent of each other if the distribution ($\mathbb{X}_{1} \mid \mathbb{X}_{2}=x_{2}$) is identical to the random variable \mathbb{X}_{1}, for all $x_{2} \in \Omega_{2}$ such that $\mathbb{P}\left[\mathbb{X}_{2}=x_{2}\right]>0$

Chain Rule

We can generalize the Bayes' Rule as follows.

Theorem (Chain Rule)

Let $\left(\mathbb{X}_{1}, \mathbb{X}_{2}, \ldots, \mathbb{X}_{n}\right)$ be a joint distribution over the sample space $\Omega_{1} \times \Omega_{2} \times \cdots \times \Omega_{n}$. For any $\left(x_{1}, \ldots, x_{n}\right) \in \Omega_{1} \times \cdots \times \Omega_{n}$ we have
$\mathbb{P}\left[\mathbb{X}_{1}=x_{1}, \ldots, \mathbb{X}_{n}=x_{n}\right]=\prod_{i=1}^{n} \mathbb{P}\left[\mathbb{X}_{i}=x_{i} \mid \mathbb{X}_{i-1}=x_{i-1} \ldots, \mathbb{X}_{1}=x_{1}\right]$

Important: Why use Bayes' Rule I

In which context do we foresee to use the Bayes' Rule to compute joint probability?

- Sometimes, the problem at hand will clearly state how to sample \mathbb{X}_{1} and then, conditioned on the fact that $\mathbb{X}_{1}=x_{1}$, it will state how to sample \mathbb{X}_{2}. In such cases, we shall use the Bayes' rule to calculate

$$
\mathbb{P}\left[\mathbb{X}_{1}=x_{1}, \mathbb{X}_{2}=x_{2}\right]=\mathbb{P}\left[\mathbb{X}_{1}=x_{1}\right] \mathbb{P}\left[\mathbb{X}_{2}=x_{2} \mid \mathbb{X}_{1}=x_{1}\right]
$$

- Let us consider an example.
- Suppose \mathbb{X}_{1} is a random variable over $\Omega_{1}=\{0,1\}$ such that $\mathbb{P}\left[X_{1}=0\right]=1 / 2$. Next, the random variable \mathbb{X}_{2} is over $\Omega_{2}=\{0,1\}$ such that $\mathbb{P}\left[X_{2}=x_{1} \mid \mathbb{X}_{1}=x_{1}\right]=2 / 3$. Note that \mathbb{X}_{2} is biased towards the outcome of \mathbb{X}_{1}.
- What is the probability that we get $\mathbb{P}\left[\mathbb{X}_{1}=0, \mathbb{X}_{2}=1\right]$?

Important: Why use Bayes' Rule II

- To compute this probability, we shall use the Bayes' rule.

$$
\mathbb{P}\left[\mathbb{X}_{1}=0\right]=1 / 2
$$

Next, we know that

$$
\mathbb{P}\left[\mathbb{X}_{2}=0 \mid \mathbb{X}_{1}=0\right]=2 / 3
$$

Therefore, we have $\mathbb{P}\left[\mathbb{X}_{2}=1 \mid \mathbb{X}_{1}=0\right]=1 / 3$. So, we get

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{X}_{1}=0, \mathbb{X}_{2}=1\right] & =\mathbb{P}\left[\mathbb{X}_{1}=0\right] \mathbb{P}\left[\mathbb{X}_{2}=1 \mid \mathbb{X}_{1}=0\right] \\
& =(1 / 2) \cdot(1 / 3)=1 / 6
\end{aligned}
$$

Probability: First Example I

- Let \mathbb{S} be the random variable representing whether I studied for my exam. This random variable has sample space $\Omega_{1}=\{\mathrm{Y}, \mathrm{N}\}$
- Let \mathbb{P} be the random variable representing whether I passed my exam This random variable has sample space $\Omega_{2}=\{\mathrm{Y}, \mathrm{N}\}$
- Our sample space is $\Omega=\Omega_{1} \times \Omega_{2}$
- The joint distribution (\mathbb{S}, \mathbb{P}) is represented in the next page

Probability: First Example II

s	p	$\mathbb{P}[\mathrm{~S}=s, \mathbb{P}=p]$
Y	Y	$1 / 2$
Y	N	$1 / 4$
N	Y	0
N	N	$1 / 4$

Probability: First Example III

Here are some interesting probability computations The probability that I pass.

$$
\begin{aligned}
\mathbb{P}[\mathbb{P}=\mathrm{Y}] & =\mathbb{P}[\mathbb{S}=\mathrm{Y}, \mathbb{P}=\mathrm{Y}]+\mathbb{P}[\mathbb{S}=\mathrm{N}, \mathbb{P}=\mathrm{Y}] \\
& =1 / 2+0=1 / 2
\end{aligned}
$$

Probability: First Example IV

The probability that I study.

$$
\begin{aligned}
\mathbb{P}[\mathbb{S}=\mathrm{Y}] & =\mathbb{P}[\mathbb{S}=\mathrm{Y}, \mathbb{P}=\mathrm{Y}]+\mathbb{P}[\mathrm{S}=\mathrm{Y}, \mathbb{P}=\mathrm{N}] \\
& =1 / 2+1 / 4=3 / 4
\end{aligned}
$$

Probability: First Example V

The probability that I pass conditioned on the fact that I studied.

$$
\begin{aligned}
\mathbb{P}[\mathbb{P}=\mathrm{Y} \mid \mathbb{S}=\mathrm{Y}] & =\frac{\mathbb{P}[\mathbb{P}=\mathrm{Y}, \mathbb{S}=\mathrm{Y}]}{\mathbb{P}[\mathbb{S}=\mathrm{Y}]} \\
& =\frac{1 / 2}{3 / 4}=\frac{2}{3}
\end{aligned}
$$

Probability: Second Example I

- Let \mathbb{T} be the time of the day that I wake up. The random variable \mathbb{T} has sample space $\Omega_{1}=\{4,5,6,7,8,9,10\}$
- Let \mathbb{B} represent whether I have breakfast or not. The random variable \mathbb{B} has sample space $\Omega_{2}=\{T, F\}$
- Our sample space is $\Omega=\Omega_{1} \times \Omega_{2}$
- The joint distribution of (\mathbb{T}, \mathbb{B}) is presented on the next page

Probability: Second Example II

t	b	$\mathbb{P}[\mathbb{T}=t, \mathbb{B}=b]$
4	T	0.03
4	F	0
5	T	0.02
5	F	0
6	T	0.30
6	F	0.05
7	T	0.20
7	F	0.10
8	T	0.10
8	F	0.08
9	T	0.05
9	F	0.05
10	T	0
10	F	0.02

Probability: Second Example III

- What is the probability that I have breakfast conditioned on the fact that I wake up at or before 7?

Formally, what is $\mathbb{P}[\mathbb{B}=\mathrm{T} \mid \mathbb{T} \leqslant 7]$?

