Homework 4

1. Factorizing the RSA modulus. Let N be the product of two random n-bit prime numbers p and q. Recall that $\varphi(N)$ is the size of \mathbb{Z}_{N}^{*}, and we have $\varphi(N)=(p-1)(q-1)$. Construct an efficient algorithm that takes as input N and $\varphi(N)$, and outputs the prime factors of N.
2. Sophie-Germain Primes. Recall that the Prime Number Theorem states that there are roughly $\frac{N}{\log N}$ prime numbers $<N$. To generate a random n-bit prime number, recall that, we followed the following two steps

- First, we counted the number of n-bit primes, and
- Finally, we generated T random numbers and one of them turned out to be a prime number.

We chose T such that the probability of finding an n-bit prime number in these T attempts is $\geqslant\left(1-2^{-t}\right)$, for a parameter t.

Now, we want to do this for the Sophie-Germain primes. We shall rely on the conjecture that there are $\frac{N}{\log ^{2} N}$ Sophie-Germain primes $<N$.
(a) How many Sophie-Germain primes need n-bits in their binary representation?
(b) Construct an algorithm that that as input (n, t) and outputs a random n-bit Sophie-Germain prime with probability $\geqslant\left(1-2^{-t}\right)$.
3. Encryption along with Signature. Recall that in RSA-based public-key encryption, if Bob announces his public-key $\mathrm{pk}_{B}=\left(N_{B}, e_{B}\right)$ then other parties can encrypt and send messages to Bob that he can decrypt (using the trapdoor d_{B} that he keeps with himself).

Recall that in RSA-based signatures, if Alice announces her public-key pk ${ }_{A}=\left(N_{A}, e_{A}\right)$ then she can sign messages that other people can verify that Alice has generated the signature (because Alice holds the trapdoor d_{A}).
How can Alice encrypt a message m of her choice and send it to Bob so that only Bob can recover the message, and Bob is guaranteed that it is indeed Alice who sent the ciphertext?

