Homework 4

1. **Factorizing the RSA modulus.** Let N be the product of two random n-bit prime numbers p and q. Recall that $\varphi(N)$ is the size of \mathbb{Z}_N^*, and we have $\varphi(N) = (p-1)(q-1)$. Construct an efficient algorithm that takes as input N and $\varphi(N)$, and outputs the prime factors of N.
2. **Sophie-Germain Primes.** Recall that the Prime Number Theorem states that there are roughly \(\frac{N}{\log N} \) prime numbers < \(N \). To generate a random \(n \)-bit prime number, recall that, we followed the following two steps

- First, we counted the number of \(n \)-bit primes, and
- Finally, we generated \(T \) random numbers and one of them turned out to be a prime number.

We chose \(T \) such that the probability of finding an \(n \)-bit prime number in these \(T \) attempts is \(\geq (1 - 2^{-t}) \), for a parameter \(t \).

Now, we want to do this for the Sophie-Germain primes. We shall rely on the conjecture that there are \(\frac{N}{\log^2 N} \) Sophie-Germain primes < \(N \).

(a) How many Sophie-Germain primes need \(n \)-bits in their binary representation?

(b) Construct an algorithm that that as input \((n, t)\) and outputs a random \(n \)-bit Sophie-Germain prime with probability \(\geq (1 - 2^{-t}) \).
3. **Encryption along with Signature.** Recall that in RSA-based public-key encryption, if Bob announces his public-key $\mathbf{pk}_B = (N_B, e_B)$ then other parties can encrypt and send messages to Bob that he can decrypt (using the trapdoor d_B that he keeps with himself).

Recall that in RSA-based signatures, if Alice announces her public-key $\mathbf{pk}_A = (N_A, e_A)$ then she can sign messages that other people can verify that Alice has generated the signature (because Alice holds the trapdoor d_A).

How can Alice encrypt a message m of her choice and send it to Bob so that only Bob can recover the message, and Bob is guaranteed that it is indeed Alice who sent the ciphertext?