Homework 3

1. Analyzing a new MAC. Suppose $\left\{F_{1}, \ldots, F_{\alpha}\right\}$ is family of pseudorandom functions from $\{0,1\}^{n}$ to $\{0,1\}^{n / 100}$.
Consider the following MAC Scheme for message $m \in\{0,1\}^{t n}$, for some constant natural number $t \geqslant 2$.
(a) Gen(): Return sk $\stackrel{\S}{\leftarrow}\{1,2, \ldots, \alpha\}$
(b) $\operatorname{Mac}_{\text {sk }}(m)$: Interpret the message $m=\left(m_{1}, m_{2}, \ldots, m_{t}\right)$, where each $m_{i} \in\{0,1\}^{n}$ and $1 \leqslant i \leqslant t$. Define $\tau_{i}=F_{\text {sk }}\left(m_{i}\right)$, for each $1 \leqslant i \leqslant t$. Return $\tau=\left(\tau_{1}, \tau_{2}, \ldots, \tau_{t}\right)$.
(c) $\operatorname{Ver}_{\text {sk }}(m, \tau)$: Interpret $m=\left(m_{1}, \ldots, m_{t}\right)$ and $\tau=\left(\tau_{1}, \ldots, \tau_{t}\right)$, where each $m_{i} \in$ $\{0,1\}^{n}$ and $\tau_{i} \in\{0,1\}^{n / 100}$. Return true if and only if $F_{\text {sk }}\left(m_{i}\right)=\tau_{i}$, for all $1 \leqslant i \leqslant t$.
(a) Prove that the above MAC scheme is not secure for $m \in\{0,1\}^{t n}$.
(b) Prove that the above MAC scheme preserves message integrity for $m \in\{0,1\}^{t n}$.
2. Designing a New MAC Scheme. We shall work over the field $\left(\mathbb{Z}_{p},+, \times\right)$, where p is a prime number. Consider the MAC scheme defined by the (Gen, Mac, ver) algorithms below for message \mathbb{Z}_{p}^{ℓ}, where $\ell \geqslant 1$ is a constant integer.

Gen() :
(a) Sample $k_{1} \stackrel{\oiint}{\leftarrow} \mathbb{Z}_{p}$ and $k_{2} \stackrel{\oiint}{\leftarrow} \mathbb{Z}_{p}$
(b) Return sk $=\left(k_{1}, k_{2}\right)$
$\operatorname{Mac}_{\mathrm{sk}=\left(k_{1}, k_{2}\right)}(m)$:
(a) Interpret $m=\left(m_{1}, m_{2}, \ldots, m_{\ell}\right)$, where each $m_{i} \in \mathbb{Z}_{p}$
(b) Let $\tau=k_{1}+m_{1} k_{2}+m_{2} k_{2}^{2}+\cdots+m_{\ell} k_{2}^{\ell}$
(c) Return τ as the tag for the message m
$\operatorname{Ver}_{\text {sk }=\left(k_{1}, k_{2}\right)}(m)$:
(a) Interpret $m=\left(m_{1}, m_{2}, \ldots, m_{\ell}\right)$, where each $m_{i} \in \mathbb{Z}_{p}$
(b) Return whether τ is identical to $k_{1}+m_{1} k_{2}+m_{2} k_{2}^{2}+\cdots+m_{\ell} k^{\ell}$
(a) Given a message $m=\left(m_{1}, m_{2}, \ldots, m_{\ell}\right)$ and its tag τ what is the maximum probability that a different message $m^{\prime}=\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{\ell}^{\prime}\right)$ that has the same $\operatorname{tag} \tau$?
(b) Given a message $m=\left(m_{1}, m_{2}, \ldots, m_{\ell}\right)$ and its tag τ what is the maximum probability that a different message $m^{\prime}=\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{\ell}^{\prime}\right)$ and τ^{\prime} as its valid tag?
(Remark: You will need to use Schwartz-Zippel Lemma to compute the probability.)
3. New Pseudorandom Function Family. In the lectures, we saw the following GGM construction for pseudorandom functions. Given a length-doubling PRG $G:\{0,1\}^{B} \rightarrow$ $\{0,1\}^{2 B}$, the GGM construction produces a family of pseudorandom functions $\left\{F_{1}, \ldots, F_{\alpha}\right\}$ from the domain $\{0,1\}^{n}$ to the range $\{0,1\}^{B}$.
In this problem, we shall generalize the GGM PRF construction in two ways.
(a) Given a length-doubling PRG $G:\{0,1\}^{B} \rightarrow\{0,1\}^{2 B}$, construct a family of pseudorandom function from the domain $\{0,1\}^{n}$ to the range $\{0,1\}^{100 B}$.
(b) Why is the GGM construction not a pseudorandom function family from the domain $\{0,1\}^{*}$ to the range $\{0,1\}^{B}$?
(c) Consider the following function family $\left\{H_{1}, \ldots, H_{\alpha}\right\}$ from the domain $\{0,1\}^{*}$ to the range $\{0,1\}^{B}$. We define $H_{k}(x)=F_{k}\left(x,\|x\|_{2}\right)$, for $k \in\{1,2, \ldots, \alpha\}$. Show that $\left\{H_{1}, \ldots, H_{\alpha}\right\}$ is not a secure PRF from $\{0,1\}^{*}$ to the range $\{0,1\}^{B}$.
(Recall: The expression $\|x\|_{2}$ represents the length of x in n-bit binary expression.)
4. Variant of ElGamal Encryption. Let (G, \circ) is a group where the DDH assumption holds and g is a generator for this group.
Recall that in the ElGamal Encryption scheme encrypts a message $m \in G$ as follows.

$$
\operatorname{Enc}_{\mathrm{pk}}(m):
$$

(a) Sample $a \stackrel{\&}{\leftarrow}\{0,1, \ldots,|G|-1\}$
(b) Compute $A=g^{a}$
(c) Output the cipher-test $\left(A, m \circ \mathrm{pk}^{a}\right)$.

Consider the following alternate encryption scheme for $m \in\{0,1, \ldots,|G|-1\}$.

$$
\operatorname{Enc} c_{\mathrm{pk}}(m) \text { : }
$$

(a) Sample $a \stackrel{\&}{\leftarrow}\{0,1, \ldots,|G|-1\}$
(b) Compute $A=g^{a}$
(c) Output the cipher-test $\left(A, g^{m} \circ \mathrm{pk}^{a}\right)$.

Why can't this encryption scheme be used?
5. Understanding Asymptotics. Suppose we have a cryptographic protocol P_{n} that is implemented using αn^{2} CPU instructions, where α is some constant. The protocol is expected to be broken using $\beta 2^{n / 10} \mathrm{CPU}$ instructions.
Suppose, today, everyone in the world uses the primitive P_{n} using $n=n_{0}$, a constant value such that even if the entire computing resources of the world were put together for 8 years we cannot compute $\beta 2^{n_{0} / 10} \mathrm{CPU}$ instructions.

Assume Moore's law that the every two years, the amount of CPU instructions we can run per second doubles.
(a) Assuming Moore's law, how much faster will be the CPUs 8 years into the future as compared to the CPUs now?
(b) At the end of 8 years, what choice of n_{1} will ensure that setting $n=n_{1}$ will ensure that the protocol P_{n} for $n=n_{1}$ cannot be broken for another 8 years?
(c) What will be the run-time of the protocol P_{n} using $n=n_{1}$ on the new computers as compared to the run-time of the protocol P_{n} using $n=n_{0}$ on today's computers?
(d) What will be the run-time of the protocol P_{n} using $n=n_{1}$ on today's computers as compared to the run-time of the protocol P_{n} using $n=n_{0}$ on today's computers?
(Remark: This problem explains why we demand that our cryptographic algorithms run in polynomial time and it is exponentially difficult for the adversaries to break the cryptographic protocols.)
6. CRHF from Discrete Log Assumption. We shall work over the group $\left(\mathbb{Z}_{p}^{*}, \times\right)$, where p is a prime number. Let g be a generator of this group.
Let us define the hash function $h_{y}(b, x)=y^{b} g^{x}$, where $y \in \mathbb{Z}_{p}^{*}, b \in\{0,1\}$, and $x \in\{0,1, \ldots, p-1\}$. Note that the domain is of size $2(p-1)$ and the range is of size ($p-1$). So, this hash function family compresses its input.
Consider the hash function family $\mathcal{H}=\left\{h_{1}, h_{2}, \ldots, h_{p-1}\right\}$.
Suppose, we sample $y \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}^{*}$. Once h_{y} was announced to the world, a hacker releases two distinct inputs (b, x) and $\left(b^{\prime}, x^{\prime}\right)$ such that $h_{y}(b, x)=h_{y}\left(b^{\prime}, x^{\prime}\right)$.
(a) Prove that $b=b^{\prime}$ is not possible.
(b) If $b \neq b^{\prime}$, then calculate $t \in\{0,1, \ldots, p-1\}$ such that $g^{t}=y$.
(Remark: This is a secure CRHF construction based on the Discrete-Log Hardness Assumption. Discrete-Log Hardness Assumption states that given $y \stackrel{\$}{\leftarrow} \mathbb{Z}_{p}^{*}$ it is computationally hard to find t such that $g^{t}=y$. Based on this computational hardness assumption the CRHF construction presented above is secure.

Why? Suppose some hacker can indeed break the CRHF, i.e., find two distinct pre-images that collide. Then following your algorithm, we can find t such that $g^{t}=y$, which was assumed to be a computationally hard task! Hence, contradiction.)

