
Name: Hemanta K. Maji

Homework 3

1. Analyzing a new MAC. Suppose {F1, . . . , Fα} is family of pseudorandom functions
from {0, 1}n to {0, 1}n/100.
Consider the following MAC Scheme for message m ∈ {0, 1}tn, for some constant
natural number t > 2.

(a) Gen(): Return sk
$←{1, 2, . . . , α}

(b) Macsk(m): Interpret the message m = (m1,m2, . . . ,mt), where each mi ∈ {0, 1}n
and 1 6 i 6 t. Define τi = Fsk(mi), for each 1 6 i 6 t. Return τ = (τ1, τ2, . . . , τt).

(c) Versk(m, τ): Interpret m = (m1, . . . ,mt) and τ = (τ1, . . . , τt), where each mi ∈
{0, 1}n and τi ∈ {0, 1}n/100. Return true if and only if Fsk(mi) = τi, for all 1 6 i 6 t.

(a) Prove that the above MAC scheme is not secure for m ∈ {0, 1}tn.
(b) Prove that the above MAC scheme preserves message integrity for m ∈ {0, 1}tn.

1

Name: Hemanta K. Maji

2

Name: Hemanta K. Maji

2. Designing a New MAC Scheme. We shall work over the field (Zp,+,×), where
p is a prime number. Consider the MAC scheme defined by the (Gen,Mac, ver)
algorithms below for message Z`p, where ` > 1 is a constant integer.

Gen() :

(a) Sample k1
$← Zp and k2

$← Zp

(b) Return sk = (k1, k2)

Macsk=(k1,k2)(m):

(a) Interpret m = (m1,m2, . . . ,m`), where each mi ∈ Zp

(b) Let τ = k1 +m1k2 +m2k
2
2 +· · ·+m`k

`
2

(c) Return τ as the tag for the message m

Versk=(k1,k2)(m):

(a) Interpret m = (m1,m2, . . . ,m`), where each mi ∈ Zp

(b) Return whether τ is identical to k1 +m1k2 +m2k
2
2 +· · ·+m`k

`

(a) Given a message m = (m1,m2, . . . ,m`) and its tag τ what is the maximum
probability that a different message m′ = (m′1,m

′
2, . . . ,m

′
`) that has the same

tag τ?

(b) Given a message m = (m1,m2, . . . ,m`) and its tag τ what is the maximum
probability that a different message m′ = (m′1,m

′
2, . . . ,m

′
`) and τ ′ as its valid

tag?

(Remark: You will need to use Schwartz-Zippel Lemma to compute the probability.)

3

Name: Hemanta K. Maji

4

Name: Hemanta K. Maji

3. New Pseudorandom Function Family. In the lectures, we saw the following GGM
construction for pseudorandom functions. Given a length-doubling PRGG : {0, 1}B →
{0, 1}2B, the GGM construction produces a family of pseudorandom functions {F1, . . . , Fα}
from the domain {0, 1}n to the range {0, 1}B.
In this problem, we shall generalize the GGM PRF construction in two ways.

(a) Given a length-doubling PRG G : {0, 1}B → {0, 1}2B, construct a family of
pseudorandom function from the domain {0, 1}n to the range {0, 1}100B.

(b) Why is the GGM construction not a pseudorandom function family from the
domain {0, 1}∗ to the range {0, 1}B?

(c) Consider the following function family {H1, . . . ,Hα} from the domain {0, 1}∗ to
the range {0, 1}B. We define Hk(x) = Fk(x, [|x|]2), for k ∈ {1, 2, . . . , α}. Show
that {H1, . . . ,Hα} is not a secure PRF from {0, 1}∗ to the range {0, 1}B.
(Recall: The expression [|x|]2 represents the length of x in n-bit binary expression.)

5

Name: Hemanta K. Maji

6

Name: Hemanta K. Maji

4. Variant of ElGamal Encryption. Let (G, ◦) is a group where the DDH assumption
holds and g is a generator for this group.

Recall that in the ElGamal Encryption scheme encrypts a message m ∈ G as follows.

Encpk(m):

(a) Sample a $←{0, 1, . . . ,|G| − 1}

(b) Compute A = ga

(c) Output the cipher-test (A,m ◦ pka).

Consider the following alternate encryption scheme for m ∈ {0, 1, . . . ,|G| − 1}.

Encpk(m):

(a) Sample a $←{0, 1, . . . ,|G| − 1}

(b) Compute A = ga

(c) Output the cipher-test (A, gm ◦ pka).

Why can’t this encryption scheme be used?

7

Name: Hemanta K. Maji

8

Name: Hemanta K. Maji

5. Understanding Asymptotics. Suppose we have a cryptographic protocol Pn that
is implemented using αn2 CPU instructions, where α is some constant. The protocol
is expected to be broken using β2n/10 CPU instructions.

Suppose, today, everyone in the world uses the primitive Pn using n = n0, a constant
value such that even if the entire computing resources of the world were put together
for 8 years we cannot compute β2n0/10 CPU instructions.

Assume Moore’s law that the every two years, the amount of CPU instructions we
can run per second doubles.

(a) Assuming Moore’s law, how much faster will be the CPUs 8 years into the future
as compared to the CPUs now?

(b) At the end of 8 years, what choice of n1 will ensure that setting n = n1 will
ensure that the protocol Pn for n = n1 cannot be broken for another 8 years?

(c) What will be the run-time of the protocol Pn using n = n1 on the new com-
puters as compared to the run-time of the protocol Pn using n = n0 on today’s
computers?

(d) What will be the run-time of the protocol Pn using n = n1 on today’s comput-
ers as compared to the run-time of the protocol Pn using n = n0 on today’s
computers?

(Remark: This problem explains why we demand that our cryptographic algorithms run in polyno-
mial time and it is exponentially difficult for the adversaries to break the cryptographic protocols.)

9

Name: Hemanta K. Maji

10

Name: Hemanta K. Maji

6. CRHF from Discrete Log Assumption. We shall work over the group (Z∗p,×),
where p is a prime number. Let g be a generator of this group.

Let us define the hash function hy(b, x) = ybgx, where y ∈ Z∗p, b ∈ {0, 1}, and
x ∈ {0, 1, . . . , p− 1}. Note that the domain is of size 2(p− 1) and the range is of size
(p− 1). So, this hash function family compresses its input.

Consider the hash function family H = {h1, h2, . . . , hp−1}.

Suppose, we sample y $← Z∗p. Once hy was announced to the world, a hacker releases
two distinct inputs (b, x) and (b′, x′) such that hy(b, x) = hy(b

′, x′).

(a) Prove that b = b′ is not possible.

(b) If b 6= b′, then calculate t ∈ {0, 1, . . . , p− 1} such that gt = y.

(Remark: This is a secure CRHF construction based on the Discrete-Log Hardness Assumption.

Discrete-Log Hardness Assumption states that given y
$←Z∗

p it is computationally hard to find t such
that gt = y. Based on this computational hardness assumption the CRHF construction presented
above is secure.

Why? Suppose some hacker can indeed break the CRHF, i.e., find two distinct pre-images that
collide. Then following your algorithm, we can find t such that gt = y, which was assumed to be a
computationally hard task! Hence, contradiction.)

11

