Homework 2

1. Defining Multiplication over \mathbb{Z}_{27}^{*}. In the class, we had considered the group $\left(\mathbb{Z}_{26},+\right)$ to construct a one-time pad for one alphabet messages. A few students were interested to define a group with 26 elements using a "multiplication"-like operation. This problem will assist you to define the $\left(\mathbb{Z}_{27}^{*}, \times\right)$ group.
Interpret \mathbb{Z}_{27}^{*} as the set of all triplets $\left(a_{0}, a_{1}, a_{2}\right)$ such that $a_{0}, a_{1}, a_{2} \in \mathbb{Z}_{3}$ and at least one of them is non-zero (you can think of the triplets as the ternary representation of the elements in $\left.\mathbb{Z}_{27}^{*}\right)$. We shall equivalently interpret the element $\left(a_{0}, a_{1}, a_{2}\right)$ as the polynomial $a_{0}+a_{1} X+a_{2} X^{2}$. So, every element in \mathbb{Z}_{27}^{*} has an associated non-zero polynomial of degree at most 2 , and every non-zero polynomial of degree at most 2 has an element in \mathbb{Z}_{27}^{*} associated with it.
The multiplication (\times operator) of the element $\left(a_{0}, a_{1}, a_{2}\right)$ with the element $\left(b_{0}, b_{1}, b_{2}\right)$ is defined as the element corresponding to the polynomial

$$
\left(a_{0}+a_{1} X+a_{2} X^{2}\right) \times\left(b_{0}+b_{1} X+b_{2} X^{2}\right) \quad \bmod X^{3}+2 X+2
$$

According to this definition of the \times operator, find

- (10 points) $(1,2,1) \times(2,2,1)$, and
- (15 points) the inverse of $(1,2,1)$.

2. One-time Pad for 3-Alphabet Words. We interpret a, b, \ldots, z as $0,1, \ldots, 25$. We will work over the group $\left(\mathbb{Z}_{26}^{3},+\right)$, where + is coordinate-wise integer-sum $\bmod 26$. For example, $a b x+a c d=a d a$.
Now, consider the one-time pad encryption scheme over the group $\left(\mathbb{Z}_{26}^{3},+\right)$.

- (12.5 points) What is the probability that the encryption of the message cat is the cipher text cat?
- (12.5 points) What is the probability that the encryption of the message cat is the cipher text dog?

3. Left Identity and Left Inverse. Recall that when we defined a group (G, \circ), we stated that there exists an element e such that for all $x \in G$ we have $x \circ e=x$. Note that e is "applied on x from the right."

Similarly, for every $x \in G$, we are guaranteed that there exists $\operatorname{inv}(x) \in G$ such that $x \circ \operatorname{inv}(x)=e$. Note that $\operatorname{inv}(x)$ is again "applied to x from the right."
Intuitively, we shall explore the following questions: (a) Is there an "identity from the left?," and (b) Is there an "inverse from the left?"

We shall formalize and prove these results in this question.

- (10 points) Prove that $e \circ x=x$, for all $x \in G$.
- (10 points) Prove that if there exists an element $\alpha \in G$ such that for all $x \in G$ we have $\alpha \circ x=x$, then $\alpha=e$.

Note that these two steps prove that the "left identity" is identical to the right identity e.

- (10 points) Prove that $\operatorname{inv}(x) \circ x=e$.
- (10 points) Prove that if there exists an element $\alpha \in G$ and $x \in G$ such that $\alpha \circ x=e$, then $\alpha=\operatorname{inv}(x)$.

Note that these two steps prove that the "left inverse of x " is identical to the left inverse $\operatorname{inv}(x)$.
Finally, we can prove the following result crucial to the proof of security of one-time pad over the group (G, \circ).

- (10 points) Suppose $m \in G$ is a message and $c \in G$ is a cipher text. Prove that there exists a unique $\mathrm{sk} \in G$ such that $m \circ \mathrm{sk}=c$.

4. One-time Pad with non-uniform secret key. (25 points) Consider the onetime pad encryption scheme over a group $(G,+)$. Suppose the a priori distribution of messages is the uniform distribution over the set G. Suppose the generation algorithm samples the secret-key sk according to the distribution \mathcal{D} over the sample space G such that \mathcal{D} is not the uniform distribution over G. Is this encryption scheme secure?
(Remark: To prove that the scheme is secure, provide a proof that the a priori distribution of messages is same as the a posteriori distribution. To prove that the scheme is insecure, provide a proof that the a priori distribution of messages is different from the a posteriori distribution.)
5. Designing Encryption Scheme. We shall work over the field $\left(\mathbb{Z}_{11},+, \times\right)$. Assume that there are ten people $\{1,2, \ldots, 10\}$. Design a private-key encryption scheme for the following scenario.

Alice meets the ten people $\{1,2, \ldots, 10\}$ today. She can provide each of them information $\left\{s_{1}, s_{2}, \ldots, s_{10}\right\}$.
Tomorrow, Alice shall encrypt a message $m \in \mathbb{Z}_{11}$. The encryption has to ensure that decryption should be possible if and only if two people among $\{1, \ldots, 5\}$ and three people among $\{6, \ldots, 10\}$ get together.

- (15 points) Provide the (Gen, Enc, Dec) algorithms.
- (15 points) Proof of security of this scheme.

6. A property of 2 -wise Independence. Let \mathcal{H} be a hash function family from the domain \mathcal{D} to the range \mathcal{R}.

- (20 points) Similar to the proof in the lectures for universal hash function family, prove the following. There exists distinct $x_{1}^{*}, x_{2}^{*} \in \mathcal{D}$ and $y_{1}^{*}, y_{2}^{*} \in \mathcal{R}$ such that

$$
\mathbb{P}\left[h\left(x_{1}^{*}\right)=y_{1}^{*}, h\left(x_{2}^{*}\right)=y_{2}^{*}: h \stackrel{\$}{\leftarrow} \mathcal{H}\right] \geqslant \frac{1}{|\mathcal{R}|^{2}}
$$

(Remark: Note that this result does not depend on whether $|\mathcal{R}|<|\mathcal{D}|$ or not.)

- (25 points) Now, suppose that $|\mathcal{R}|<|\mathcal{D}|$. Suppose that for all distinct $x_{1}, x_{2} \in \mathcal{D}$ the following holds.

$$
\mathbb{P}\left[h\left(x_{1}\right)=h\left(x_{2}\right): h \stackrel{\oiint}{\leftarrow} \mathcal{H}\right]<\frac{1}{|\mathcal{R}|}
$$

Prove that there exists distinct $x_{1}^{*}, x_{2}^{*} \in \mathcal{D}$ and $y_{1}^{*}, y_{2}^{*} \in \mathcal{R}$ such that

$$
\mathbb{P}\left[h\left(x_{1}^{*}\right)=y_{1}^{*}, h\left(x_{2}^{*}\right)=y_{2}^{*}: h \stackrel{\$}{\leftarrow} \mathcal{H}\right]>\frac{1}{|\mathcal{R}|^{2}}
$$

This result proves that if a universal hash-function family has collision probability $<\frac{1}{|\mathcal{R}|}$ then it is not pairwise independent.
7. Extra Credit. Suppose $\mathcal{D}=\{0,1\}^{n}$ and $\mathcal{R}=\{0,1\}^{n-1}$. Construct a hash function family such that for all distinct $x_{1}, x_{2} \in \mathcal{D}$ we have

$$
\mathbb{P}\left[h\left(x_{1}\right)=h\left(x_{2}\right): h \stackrel{\$}{\leftarrow} \mathcal{H}\right]=\frac{1}{M} \cdot\left(\frac{N-M}{N-1}\right),
$$

where $N=2^{n}$ and $M=2^{n-1}$. Try to construct a hash function family such that each hash function can be efficiently evaluated.

