Homework 1

1. Practice with Fields. We shall work over the field $\left(\mathbb{Z}_{7},+, \times\right)$.

- (7 points) Addition Table. The (i, j)-th entry in the table is $i+j$. Complete this table. You do not need to fill the black cells because the addition is commutative.

	0	1	2	3	4	5	6
0							
1							
2							
3							
4							
5							
6							

Table 1: Addition Table.

- (7 points) Multiplication Table. The (i, j)-th entry in the table is $i \times j$. Complete this table.

Table 2: Multiplication Table.

- (3.25 points) Additive and Multiplicative Inverses. Write the additive and multiplicative inverses in the table below.

	0	1	2	3	4	5	6
Additive Inverse							
Multiplicative Inverse							

Table 3: Additive and Multiplicative Inverses Table.

- (10.5 points) Division Table. The (i, j)-th entry in the table is i / j. Complete this table.

	1	2	3	4	5	6
0						
1						
2						
3						
4						
5						
6						

Table 4: Division Table.
2. An Illustrative Execution of Shamir's Secret Sharing Scheme. We shall work over the field $\left(\mathbb{Z}_{7},+, \times\right)$. We are interested in sharing a secret among 6 parties such that any 4 parties can reconstruct the secret, but no subset of 3 parties gain any additional information about the secret.

Suppose the secret is $s=5$. The random polynomial of degree <4 that is chosen during the secret sharing steps is $p(X)=2 X^{2}+3 X+5$.

- (12 points) What are the respective secret shares of parties $1,2,3,4,5$, and 6 ?
- (16 points) Suppose parties $1,3,5$, and 6 are interested in reconstructing the secret. Run Lagrange Interpolation algorithm as explained in the class.
(Remark: It is essential to show the step-wise reconstruction procedure to score full points. In particular, you need to write down the polynomials $p_{1}(X), p_{2}(X), p_{3}(X)$, and $p_{4}(X)$.)
- (18 points) Suppose parties 1, 3, and 5 get together. Let $q_{\tilde{s}}(X)$ be the polynomial that is consistent with their shares and the point $(0, \widetilde{s})$, for each $\widetilde{s} \in \mathbb{Z}_{p}$. Write down the polynomials $q_{0}(X), q_{1}(X), \ldots, q_{6}(X)$.

3. A bit of Counting. In this problem, we will do a bit of counting related to polynomials that pass through a given set of points in the plane.
We are working over the field $\left(\mathbb{Z}_{p},+, \times\right)$, where p is a prime number. Let \mathcal{P}_{t} be the set of all polynomials in the indeterminate X with degree $<t$ and coefficients in \mathbb{Z}_{p}.

- (15 points) Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$, and $\left(x_{t}, y_{t}\right)$ be t points in the plane \mathbb{Z}_{p}^{2}. We have that $x_{i} \neq x_{j}$ for all $i \neq j$, that is, the first coordinates of the points are all distinct.
Prove that there exists a unique polynomial in \mathcal{P}_{t} that passes through these t points.
(Hint: Use Lagrange Interpolation and Schwartz-Zippel Lemma.)
- (15 points) Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$, and $\left(x_{t-1}, y_{t-1}\right)$ be $(t-1)$ points in the plane \mathbb{Z}_{p}^{2}. We have that $x_{i} \neq x_{j}$ for all $i \neq j$, that is, the first coordinates of the points are all distinct.
Prove that there are p polynomials in \mathcal{P}_{t} that pass through these $(t-1)$ points.
- (20 points) Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$, and $\left(x_{k}, y_{k}\right)$ be k points in the plane \mathbb{Z}_{p}^{2}, where $k \leqslant t$. We have that $x_{i} \neq x_{j}$ for all $i \neq j$, that is, the first coordinates of the points are all distinct.
Prove that there are p^{t-k} polynomials in \mathcal{P}_{t} that pass through these k points.

4. A bit of Probability. Recall Shamir's secret sharing algorithm. In this problem, we shall prove a few properties of this secret sharing scheme.
Suppose we are working over the field $\left(\mathbb{Z}_{p},+, \times\right)$. Let $\mathbb{P}[S=s]$, for $s \in \mathbb{Z}_{p}$, be the a priori probability of the secret s. We are interested in sharing secrets among n parties such that any t parties can reconstruct the secret, and no additional information about the secret is revealed to any subset of $(t-1)$ parties.

Let \mathcal{P}_{t} be the set of all polynomials in the indeterminate X with degree $<t$ and coefficients in \mathbb{Z}_{p}. Let $p(X)$ represent the polynomial used to secret share s. Let s_{i} represent the evaluation of the polynomial $p(X)$ at $X=i$, represented by $p(i)$, for $i \in\{1, \ldots, p-1\}$. That is, the secret share received by party i is s_{i}.

- (10 points) For a fixed secret $s \in \mathbb{Z}_{p}$, prove that

$$
\mathbb{P}[p(0)=s]=\mathbb{P}[S=s]
$$

- (10 points) For $x_{1} \in \mathbb{Z}_{p}^{*}$ and $y_{1} \in \mathbb{Z}_{p}$, prove that

$$
\mathbb{P}\left[p(0)=s, p\left(x_{1}\right)=y_{1}\right]=\frac{\mathbb{P}[S=s]}{p}
$$

- (10 points) For $0 \leqslant k<t$, distinct $x_{1}, \ldots, x_{k} \in \mathbb{Z}_{p}^{*}$ and $y_{1}, \ldots, y_{k} \in \mathbb{Z}_{p}$

$$
\mathbb{P}\left[p(0)=s, p\left(x_{1}\right)=y_{1}, \ldots, p\left(x_{k}\right)=y_{k}\right]=\frac{\mathbb{P}[S=s]}{p^{k}}
$$

- (10 points) For $0 \leqslant k<t$, distinct $x_{1}, \ldots, x_{k} \in \mathbb{Z}_{p}^{*}$ and $y_{1}, \ldots, y_{k} \in \mathbb{Z}_{p}$

$$
\mathbb{P}\left[p\left(x_{1}\right)=y_{1}, \ldots, p\left(x_{k}\right)=y_{k}\right]=\frac{1}{p^{k}}
$$

5. (36.25 points) Privacy Concern. In the class, a few students proposed that we restrict Shamir's Secret Sharing scheme to use only polynomials of degree ($t-1$) instead of all polynomials of degree $<t$. We will demonstrate a security flaw with this modified scheme.
Suppose $t=3$ and we are working over $\left(\mathbb{Z}_{5},+, \times\right)$. A priori, we have $\mathbb{P}[S=s]=\frac{1}{5}$, for all secrets $s \in \mathbb{Z}_{5}$. Assume that $p(X)=X^{2}+1$ was the polynomial used for secret sharing.

Suppose party 1 and party 3 get together. Given their secret shares, what is the a posteriori probability of each secret?

