Homework 0

- 1. Estimating Sums. In this problem we estimate two summations.
 - (8 + 8 points) $S = \sum_{i=1}^{n} \frac{1}{i}$. Obtain (meaningful) upper and lower bounds for S using integrals.
 - (9 points) In the lecture, we saw that if f is a concave upwards function then the following is true.

$$\frac{f(x-1) + f(x)}{2} \ge \int_{x-1}^x f(t) \,\mathrm{d}t$$

Prove that, for a concave upwards function f, we have

$$f(1) + f(2) + \dots + f(n) \ge \frac{f(1) + f(n)}{2} + \int_1^n f(t) dt$$

- 2. Some Group Theory. In this problem we shall derive some basic results based on the definition of groups introduced in the lectures. Let (G, \circ) be a group and let e be the identity element of the group.
 - (5 points) Prove that it is impossible that there exists $a, b, c \in G$ such that $a \neq b$ but $a \circ c = b \circ c$.
 - (5 points) Suppose $a, b \in G$. Let inv(a) and inv(b) be the inverses of a and b, respectively (i.e., $a \circ inv(a) = e$ and $b \circ inv(b) = e$). Prove that inv(a) = inv(b) if and only if a = b.
 - (10+5 points) Let $G = \{x_1, x_2, \ldots, x_n\}$, i.e. G is a finite group. Suppose G also has the **commutativity** property, i.e., for all $a, b \in G$, we have $a \circ b = b \circ a$ (such groups are called Abelian). Define $x = x_1 \circ x_2 \circ \cdots \circ x_n$. Prove that $x \circ x = e$. Give an example of a commutative group where $x \neq e$.

(Comment: This demonstrates that the result is tight!)

3. Some properties of (\mathbb{Z}_p^*, \times) . Recall that \mathbb{Z}_p^* is the set $\{1, \ldots, p-1\}$ and \times is integer multiplication mod p, where p is a prime. For example, if p = 5, then 2×3 is 1. In this problem we shall show that (\mathbb{Z}_p^*, \times) is a group. The only part missing in the lecture was the proof that every $x \in \mathbb{Z}_p^*$ has an inverse. We will find the inverse of any element x.

- (10 points) Recall $\binom{p}{k} := \frac{p!}{k!(p-k)!}$. For a prime p, prove that p divides $\binom{p}{k}$, if $k \in \{1, 2, \dots, p-1\}$.
- (5 points) Recall that $(1+x)^p = \sum_{k=0}^p {p \choose k} x^k$. Prove by induction that, for any $x \in \mathbb{Z}_p^*$, we have

$$\overbrace{x \times x \times \cdots \times x}^{p\text{-times}} = x$$

• (10 points) For $x \in \mathbb{Z}_p^*$, prove that the inverse of x is given by

$$\underbrace{x \times x \times \cdots \times x}^{(p-2)\text{-times}}$$

4. Efficient Exponentiation Algorithm. (25 points) Suppose (G, \circ) is a group that is generated by g. In the lecture notes, we have seen an algorithm that constructs the list

$$n[0] = g, n[1] = g^2, n[2] = g^4, \dots, n[k] = g^{2^k}$$

using the \circ operation only k times.

Suppose *i* is an integer in the range $\{0, 1, \ldots, 2^{k+1} - 1\}$. Give an algorithm that computes g^i from the list presented above using at most (k+1) additional uses of the \circ operator.