Homework 0

1. **Estimating Sums.** In this problem we estimate two summations.
 - (8 + 8 points) $S = \sum_{i=1}^{n} \frac{1}{i}$. Obtain (meaningful) upper and lower bounds for S using integrals.
 - (9 points) In the lecture, we saw that if f is a concave upwards function then the following is true.
 \[
 \frac{f(x-1) + f(x)}{2} \geq \int_{x-1}^{x} f(t) \, dt
 \]
 Prove that, for a concave upwards function f, we have
 \[
 f(1) + f(2) + \cdots + f(n) \geq \frac{f(1) + f(n)}{2} + \int_{1}^{n} f(t) \, dt
 \]

2. **Some Group Theory.** In this problem we shall derive some basic results based on the definition of groups introduced in the lectures. Let (G, \circ) be a group and let e be the identity element of the group.
 - (5 points) Prove that it is impossible that there exists $a, b, c \in G$ such that $a \neq b$ but $a \circ c = b \circ c$.
 - (5 points) Suppose $a, b \in G$. Let $\text{inv}(a)$ and $\text{inv}(b)$ be the inverses of a and b, respectively (i.e., $a \circ \text{inv}(a) = e$ and $b \circ \text{inv}(b) = e$). Prove that $\text{inv}(a) = \text{inv}(b)$ if and only if $a = b$.
 - (10+5 points) Let $G = \{x_1, x_2, \ldots, x_n\}$, i.e. G is a finite group. Suppose G also has the **commutativity** property, i.e., for all $a, b \in G$, we have $a \circ b = b \circ a$ (such groups are called Abelian). Define $x = x_1 \circ x_2 \circ \cdots \circ x_n$. Prove that $x \circ x = e$. Give an example of a commutative group where $x \neq e$.
 (Comment: This demonstrates that the result is tight!)

3. **Some properties of (\mathbb{Z}_p^*, \times).** Recall that \mathbb{Z}_p^* is the set $\{1, \ldots, p-1\}$ and \times is integer multiplication mod p, where p is a prime. For example, if $p = 5$, then 2×3 is 1.
 In this problem we shall show that (\mathbb{Z}_p^*, \times) is a group. The only part missing in the lecture was the proof that every $x \in \mathbb{Z}_p^*$ has an inverse. We will find the inverse of any element x.
• (10 points) Recall \(\binom{p}{k} := \frac{p^k}{k!(p-k)!} \). For a prime \(p \), prove that \(p \) divides \(\binom{p}{k} \), if \(k \in \{1, 2, \ldots, p-1\} \).

• (5 points) Recall that \((1 + x)^p = \sum_{k=0}^{p} \binom{p}{k} x^k \). Prove by induction that, for any \(x \in \mathbb{Z}_p^* \), we have

\[
x \times x \times \cdots \times x = x^{p \text{-times}}
\]

• (10 points) For \(x \in \mathbb{Z}_p^* \), prove that the inverse of \(x \) is given by

\[
x^{(p-2)\text{-times}}
\]

4. **Efficient Exponentiation Algorithm.** (25 points) Suppose \((G, \circ)\) is a group that is generated by \(g \). In the lecture notes, we have seen an algorithm that constructs the list

\[
n[0] = g, n[1] = g^2, n[2] = g^4, \ldots, n[k] = g^{2^k}
\]

using the \(\circ \) operation only \(k \) times.

Suppose \(i \) is an integer in the range \(\{0, 1, \ldots, 2^{k+1} - 1\} \). Give an algorithm that computes \(g^i \) from the list presented above using at most \((k+1) \) additional uses of the \(\circ \) operator.