
Lecture 38: Secure Multi-party Computation

MPC



Problem Statement I

Suppose Alice has private input x , and Bob has private input y
Alice and Bob are interested in computing z = f (x , y) such
that each party obtains no additional information than z

For the current presentation, we shall assume that f (·, ·) is a
deterministic function of the inputs. It is possible to consider
randomized functions as well, but we shall not cover it in this
course.
In this course we shall restrict to two-parties. In general, there
can be n-parties where the private-inputs of the parties,
respectively, are x1, x2, . . . , xn.
All parties know the function “f ” that they are evaluating.
In this course we shall consider adversaries that are
semi-honest, i.e., the parties follow the protocol but are curious
to know more information about the private input of the other
parties

MPC



Problem Statement II

Example.

Suppose countries A and B have two military satellites orbiting
the earth

The input for party 1 is the location and trajectory of their
satellite

The input for party 2 is the location and trajectory of their
satellite

The function “f ” computes whether the two satellites will
collide in the next 10 minutes (the output is true or false)

MPC



Problem Statement III

Correctly Evaluating Functions.

Note that it is trivial to correctly evaluate a function. First,
each party declares its private input to all other parties. Next,
each party computes the function.

However, this is not secure. Because, the parties (potentially)
learn more than the output z .

For example, in the example we consider, parties shall learn the
location and trajectory of each other’s military satellites, which
is definitely not secure!

The difficulty of the problem arises from the security
constraint (and not the correctness constraint)

MPC



Trusted Third-party

Suppose Alice and Bob have a trusted third-party (TTP)
Then, Alice and Bob can send their respective private inputs x
and y to the TTP, and the TTP computes z = f (x , y) and
sends z to both Alice and Bob
In our example, suppose, both countries trust Switzerland.
Countries A and B share the location and trajectory of their
military satellites, and Switzerland computes whether they will
collide in the next 10 minutes and tells the answer to both the
countries. This is a secure solution!
Lesson Learned. If there is a trusted third-party, then secure
computation is easy.
The non-triviality of secure multi-party computation arises
because there is no trusted third-party in the real world

MPC



Ideal World

In the ideal world, parties have a trusted third-party
In this world, parties send their respective input to the TTP
and the TTP performs the computation on behalf of the
parties, and reports back their respective outputs zA and zB

f

Alice Bob

Private Input: x Private Input: y

Output: zA Output: zB

MPC



Real World

In the real world, there is no trusted third-party
Our goal is to algorithmically implement the TTP using
cryptographic protocols
Security implies that “Alice learns no more than zA” and “Bob
learns no more than zB ”

Alice Bob

Private Input: x Private Input: y

Cryptographic
Protocol

Compute zA Compute zB

MPC



Example of Secure Computation: XOR I

Suppose Alice has private input x ∈ {0, 1}
Suppose Bob has private input y ∈ {0, 1}
They are interested in computing zA = zB = f (x , y) = x ⊕ y

The function is equivalently represented by the following matrix

0 1

0

1

0 1

1 0

Alice
Input

Bob Input

MPC



Example of Secure Computation: XOR II
Note that if the private input of Alice is x = 0 then zA reveals
the private input of Bob (Think about this)
Similarly, if the private input of Alice is x = 1 then zA reveals
the private input of Bob (Think)
So, it is secure for Bob to just reveal his input to Alice
(because Alice finds out Bob’s input from her output anyways)
Analogously, Bob also finds out the private input of Alice
always. So, it is secure for Alice to reveal her private input to
Bob (because Bob finds out Alice’s input from his output
anyways)
So, the following protocol is a secure protocol to compute
zA = zB = x ⊕ y

1 Alice sends her private input x to Bob

2 Bob sends his private input y to Alice

3 Both parties compute zA = zB = x ⊕ y

MPC



Example of Secure Computation: OR I

Suppose Alice has private input x ∈ {0, 1}
Suppose Bob has private input y ∈ {0, 1}
They are interested in computing zA = zB = f (x , y) = x ∨ y

The function is equivalently represented by the following matrix

0 1

0

1

0 1

1 1

Alice
Input

Bob Input

MPC



Example of Secure Computation: OR II
Note that if the private input of Alice is x = 0 then zA reveals
the private input of Bob
However, if the private input of Alice is x = 1 then zA does
not reveal anything about Bob’s input (Think)
So, Bob can reveal his private input to Alice only when x = 0;
otherwise, not
Analogously, Alice can reveal her private input to Bob only
when y = 0; otherwise, not
The Conclusion. Alice cannot reveal her private input unless
she is sure that y = 0. Moreover, Bob cannot reveal his
private input unless he is sure that x = 0. So, neither party
can risk revealing their respective private inputs first. There is
a deadlock. This argument can be made more formal
mathematically to argue that there is no secure protocol to
compute zA = zB = x ∨ y . (This mathematical argument is
beyond the scope of this course)

MPC



Example of Secure Computation: OR III

Additional Pointer. In fact, one can show that computing OR is
complete. That is, if we can securely compute zA = zB = x ∨ y
then we can securely compute any function! (Again, this is beyond
the scope of this course)

MPC



Example of Secure Computation: MAX I

Suppose Alice has private input x ∈ {0, 2}
Suppose Bob has private input y ∈ {1, 3}
They are interested in computing
zA = zB = f (x , y) = max{x , y}
The function is equivalently represented by the following matrix

1 3

0

2

1 3

2 3

Alice
Input

Bob Input

MPC



Example of Secure Computation: MAX II

Note that zA always reveals Bob’s private input to Alice
(Think)

Moreover, zB reveals Alice’s private input to Bob if y = 1;
otherwise, it reveals no information (Think)

So, it is secure for Bob to reveal his private input to Alice. If
y 6= 3, then Alice can reveal her private input to Bob.

So, the following is a secure protocol to compute
zA = zB = max{x , y}, where x ∈ {0, 2} and y ∈ {1, 3}.

1 Bob sends y to Alice
2 Alice sends z = max{x , y} to Bob

MPC



Example of Secure Computation: The Dutch Flower Auction
I

Let us generalize the previous example.

Suppose Alice and Bob are bidding for an item

Assume that Alice only bids even amount of money
x ∈ {0, 2, . . . , 2k − 2}, and Bob bids odd amount of money
y ∈ {1, 3, . . . , 2k − 1}
We are interested in computing the winning bid
zA = zB = max{x , y}

MPC



Example of Secure Computation: The Dutch Flower Auction
II

Crucial Observation.
Let M be the maximum possible bid. (In this case, we have
M = 2k − 1.)

Note that both parties find out whether the bid is M or not.
(Think very carefully about this)

So, the party who can make the bid M declares “whether his
bid is M or not” (In this case, Bob can declare whether
y = 2k − 1 or not)

If the maximum bid is made then we are done!

Otherwise, we recurse. (In this case, we recursively compute
the maximum where x ∈ {0, 2, . . . , 2k − 2} and
y ∈ {1, 3, . . . , 2k − 3})

MPC



Example of Secure Computation: The Dutch Flower Auction
III

The secure protocol, therefore, is

1 If y = 2k − 1, then Bob declares z = 2k − 1; otherwise he
asks Alice to continue

2 If x = 2k − 2, then Alice declares z = 2k − 2; otherwise she
asks Bob to continue

3 If y = 2k − 3, then Bob declares z = 2k − 3; otherwise he
asks Alice to continue

4 And so on...

MPC



Example of Secure Computation: The Dutch Flower Auction
IV

However, this protocol is not efficient. The round complexity
of the protocol is exponential in the representation size of the
parties’ inputs.

MPC



Oblivious Transfer I

m-choose-1-Oblivious Transfer (OT).

Alice has private input (θ1, θ2, . . . , θm) such that each θi ∈ S
(an arbitrary set S)

Bob has private input i ∈ {1, 2, . . . ,m}
And, we have zA = NULL (the empty string), and zB = θi

MPC



Oblivious Transfer II

Security Requirement.

Note that Alice obtains no additional information about Bob’s
private input i

And, Bob obtains no additional information about θj , where
j 6= i

MPC



Oblivious Transfer III

Using the RSA assumption, we can construct a secure protocol for
m-choose-1 OT.

OT(θ1, θ2, . . . , θn, i):
1 Alice picks (u, trap) and sends the trapdoor permutation

fu : D → R to Bob
2 Bob picks αi

$←D and computes βi = fu(αi ). For all j 6= i ,
Bob picks βj

$←R. Bob sends (β1, β2, . . . , βm) to Alice.
3 For each j , Alice computes αj = f −1

u (βj), using the trapdoor
trap. For each j , Alice computes the encryption cj = θj · αj

(i.e., the encryption of θj using one-time pad, where the
secret-key is αj). Alice sends (c1, c2, . . . , cm) to Bob.

4 Bob recovers θi by computing ci/αi .

MPC



Oblivious Transfer IV

Note that Bob cannot recover any other message θj , where j 6= i ,
because he does not have the associated secret-key αj (he only has
βj and it is computationally hard for him to invert βj because he
does not have the trapdoor trap).
Alice’s view in this protocol is independent of Bob’s input i .

MPC



Securely Computing Any Function using Oblivious Transfer I

Suppose Alice and Bob have private inputs x ∈ SA and
y ∈ SB , respectively

They are interested in securely computing zA = zB = f (x , y)

Let us use the m-choose-1 OT protocol to securely compute f

1 Suppose SB = {y1, y2, . . . , ym}. Alice computes θj = f (x , yj),
where j ∈ {1, 2, . . . ,m}. Let y = yi . Alice and Bob run the
m-choose-1 OT protocol with Alice private input
(θ1, θ2, . . . , θm) and Bob private input i . At the end of this
OT protocol, Bob obtains the output z = θi = f (x , yi ).

2 Bob sends z to Alice

MPC



Securely Computing Any Function using Oblivious Transfer
II

Note that this is an efficient protocol only when m is a
constant. So, for a constant value of m we have constructed a
secure protocol for f that is also efficient.

Otherwise, the value m is exponentially large in the size of the
representation of Bob’s input. In this case, the protocol is
secure but not efficient. In the next lecture, we shall construct
efficient secure computation protocols for any efficient f .

MPC


