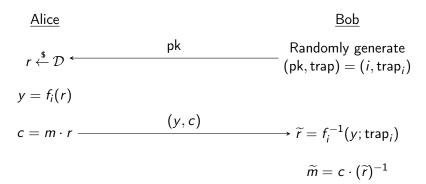
Lecture 37: Signature of Long Messages

- Let $\mathcal{F} = \{f_1, f_2, \dots, f_{\alpha}\}$ be a family of functions from $\mathcal{D} \to \mathcal{R}$ (if f_i s are permutations, then $\mathcal{D} = \mathcal{R}$)
- Let $T = {trap_1, trap_2, ..., trap_\alpha}$ be the set of corresponding trapdoors for these functions
- It is difficult to invert the functions f_i
- However, given trap_i, the function f_i is easy to invert
- We saw how these trapdoor OWF/OWP families can be used to construct public-key encryption and digital signatures

イロト イポト イヨト イヨト

Public-key Encryption.



・ロト ・ 同ト ・ ヨト ・ ヨト -

- Using the RSA assumption, the functions are x^e , for $e \in \mathbb{Z}^*_{\varphi(N)}$
- The corresponding trapdoor is d such that e · d = 1 mod φ(N)

Digital Signature. based on RSA assumption

$$\begin{array}{ccc} \underline{Alice} & \underline{Bob} \\ \\ \text{Generate } (N, e, d) & \underline{pk = (N, e, r)} \\ \text{and random } r & & \\ \\ \sigma = (r \| m)^d & \underline{(m, \sigma)} & \\ \end{array} \\ \end{array} \\ (\sigma)^e == (r \| m)$$

Intuitively, Alice picks a function f_e by choosing e. Then, the signature on (r||m) is $\sigma = f_e^{-1}(r||m) = (r||m)^d$. Verification if performed by checking $f_e(\sigma) == (r||m)$.

- Suppose the integers in \mathbb{Z}_N^* need 2*n*-bits to be expressed
- Then, our scheme signs messages m of length n-bits, using a signature σ of length 2n-bits
- Can we sign long messages using a small signature?

- The intuition here is to hash down the message using a collision-resistant hash function family, and then sign the hash
- Let $\mathcal{H} = \{h_1, h_2, \dots, h_\beta\}$ be a family of collision-resistant hash functions from the domain $\{0, 1\}^* \to \{0, 1\}^n$

$$\begin{array}{c} \underline{\text{Alice}} & \underline{\text{Bob}} \\ \\ \text{Generate } (N, e, d) & \underline{\text{pk} = (N, e, r, \text{sk})} \\ \text{and random } r \text{ and sk} \\ \\ \sigma = (r \parallel h_{\text{sk}}(m))^d & \underbrace{(m, \sigma)} \\ \end{array} (\sigma)^e == (r \parallel h_{\text{sk}}(m))$$