Lecture 37: Signature of Long Messages
Let $\mathcal{F} = \{f_1, f_2, \ldots, f_\alpha\}$ be a family of functions from $\mathcal{D} \to \mathcal{R}$ (if f_is are permutations, then $\mathcal{D} = \mathcal{R}$).

Let $T = \{\text{trap}_1, \text{trap}_2, \ldots, \text{trap}_\alpha\}$ be the set of corresponding trapdoors for these functions.

It is difficult to invert the functions f_i.

However, given trap_i, the function f_i is easy to invert.

We saw how these trapdoor OWF/OWP families can be used to construct public-key encryption and digital signatures.
Public-key Encryption.

Alice

\[r \leftarrow \mathcal{D} \]

\[y = f_i(r) \]

\[c = m \cdot r \]

Bob

Randomly generate \((pk, \text{trap}) = (i, \text{trap}_i)\)

\[\tilde{c} = f_i^{-1}(y; \text{trap}_i) \]

\[\tilde{m} = c \cdot (\tilde{r})^{-1} \]
Using the RSA assumption, the functions are x^e, for $e \in \mathbb{Z}_{\varphi(N)}^*$.

The corresponding trapdoor is d such that $e \cdot d \equiv 1 \pmod{\varphi(N)}$.

Signature
Digital Signature. based on RSA assumption

Alice

Generate (N, e, d) and random r

$\sigma = (r\|m)^d$

Bob

$\text{pk} = (N, e, r)$

(m, σ)

$(\sigma)^e == (r\|m)$

Intuitively, Alice picks a function f_e by choosing e. Then, the signature on $(r\|m)$ is $\sigma = f_e^{-1}(r\|m) = (r\|m)^d$. Verification if performed by checking $f_e(\sigma) == (r\|m)$.
Suppose the integers in \mathbb{Z}_N^* need $2n$-bits to be expressed.

Then, our scheme signs messages m of length n-bits, using a signature σ of length $2n$-bits.

Can we sign long messages using a small signature?
The intuition here is to hash down the message using a collision-resistant hash function family, and then sign the hash.

Let \(H = \{ h_1, h_2, \ldots, h_β \} \) be a family of collision-resistant hash functions from the domain \(\{0, 1\}^* \rightarrow \{0, 1\}^n \)

Alice

Generate \((N, e, d)\) and random \(r\) and \(sk\)

\[\sigma = (r \| h_{sk}(m))^d \]

Bob

\[pk = (N, e, r, sk) \]

\[(m, \sigma) \rightarrow (\sigma)^e = (r \| h_{sk}(m)) \]