
Lecture 36: Trapdoor One-way
Function/Permutation Family

Trapdoor OWF/OWP



Recall I

Let us recall the RSA assumption and some of its salient properties

Pick p, q
$← Pn

Compute N = p · q
Let ϕ(N) =

∣∣Z∗N ∣∣ = (p − 1)(q − 1)

Claim
For every e ∈ Z∗ϕ(N), the function xe : Z∗N → Z∗N is a bijection

Claim (RSA Assumption)

When e
$← Z∗ϕ(N), the function xe is hard to invert

Note that we are not claiming that xe is hard to invert for every
e ∈ Z∗ϕN . There can be choices of e for which it might be easy to

Trapdoor OWF/OWP



Recall II

invert. But for a randomly chosen e
$← Z∗ϕ(N) the function is hard

to invert.

Claim
For each e ∈ Z∗ϕ(N) there exists (an associated) d such that ed = 1
mod ϕ(N). Given d it is easy to invert the function xe

Trapdoor OWF/OWP



Recall III

Let us rewrite the previous observation in the following manner

Let Z∗ϕ(N) = {e1, e2, . . . , eα}
Consider the family of functions

F = {f1 = xe1 , f2 = xe2 , . . . , fα = xeα}

Let us write the trapdoor set as

T = {d1, d2, . . . , dα}

Each function fi = xei has an associated trapdoor trapi = di
such that, given di , it is easy to invert the function fi = xei

When i
$←{1, 2, . . . , α}, the function fi is hard to invert

Given the associated trapdoor di , it is easy to invert the
function fi

Trapdoor OWF/OWP



Trapdoor One-way Functions I

Definition (Trapdoor OWF)
Let F represent the following family of functions

F = {f1, f2, . . . , fα} ,

where each function fi : D → R. Let T represent the corresponding set of
trapdoors

T = {trap1, trap2, . . . , trapα}
The family of function F along with the set of trapdoors T is a trapdoor
one-way function family if it satisfies the following conditions.

1 One-way. For i $←{1, 2, . . . , α} the function fi is hard to invert

2 Trapdoor. For every i ∈ {1, 2, . . . , α}, given the trapdoor trapi , it is easy
to invert the function fi

Trapdoor OWF/OWP



Trapdoor One-way Functions II

If D = R and each fi is a bijection, then the family F along
with the set of trapdoors T is referred to as a “trapdoor
one-way permutation family”

A particular instance of trapdoor one-way permutation family
is provided by the RSA assumption. Note that the “Recall
slides” demonstrate that the set of function xe , where
e ∈ Z∗ϕ(N) is such a family. The trapdoor for xei is di such
that eidi = 1 mod ϕ(N).

Several contexts where RSA is used, we can use any trapdoor
one-way permutation family instead. We demonstrate this
using RSA key-agreement protocol in the next slide.

Trapdoor OWF/OWP



Key-agreement using Trapdoor Permutation Family I

Let us revisit the RSA key-agreement protocol

Alice Bob

p, q
$← Pn

N = p · q

ei
$← Z∗

ϕ(N) = {e1, e2, . . . , eα}r
$← Z∗

N

pk = (N, n, i)

di s.t. eidi = 1 mod ϕ(N)y = r ei
y

r̃ = ydi

Since, each xe is a permutation we have r = r̃ . The security of this
scheme stems from the fact that for ei

$←Z∗ϕ(N) the image y is hard

to invert (for a random r
$← Z∗N)

Trapdoor OWF/OWP



Key-agreement using Trapdoor Permutation Family II

We can instead write the same scheme using a general trapdoor
one-way permutation family. Let F = {f1, f2, . . . , fα} be a family of
functions from the domain D and range R, and with associated set
of trapdoors {trap1, trap2, . . . , trapα}.

Alice Bob

i
$←{1, 2, . . . , α}r

$←D
pk = i

y = fi (r) r̃ = invert fi at y using trapi
y

Trapdoor OWF/OWP



Key-agreement using Trapdoor Permutation Family III

At an abstract level, the party that can perform a task and
that particular task cannot be performed by an adversary is the
holder of the trapdoor. For example, in the previous case, we
want Bob to decrypt and an adversary should not be able to
decrypt. So, Bob should be the one with the trapdoor.

Let us apply this intuition to solve a new problem

Trapdoor OWF/OWP



Digital Signatures I

1 In a digital signature scheme the signer publishes a public-key
pk

2 Later if the signer wants to endorse a document m, then she
signs it with a signature σ

3 Everyone should be able to verify that “the person who
published pk” is indeed the one who endorses m

4 An adversary, who gets to see (pk,m, σ) should not be able to
forge signatures on new messages. That is, the adversary
should not be able to generate (m′, σ′) that verifies.

Trapdoor OWF/OWP



Digital Signatures II

Note that the signer should be able to sign while the adversary
should not be able to sign. This means that the signer should
have the trapdoor.

Further, it should be hard for an adversary to sign messages.
This implies that “signing a message” should be associated to
“inverting the function” (a difficult task if one does not have
the trapdoor).

Trapdoor OWF/OWP



Digital Signatures III

So, signer should pick an index i

The signature of m is σ = f −1
i (m), which can be easily

computed given di

A verifier should be able to test fi (σ) = m (an easy task for
everyone). So, the public-key should be pk = i

Trapdoor OWF/OWP



Digital Signatures IV

Let us write down our new signature scheme

Signer Verifier

i
$←{1, . . . , α}

pk = i

σ = f −1
i (m, trapi ) Verify σ is equal to fi (m)

(m, σ)

Note that we only need “trapdoor one-way function family” and not
“trapdoor one-way permutation family” (because the message is
sent in the open, we need not recover it).
We can instantiate this using the RSA trapdoor one-way
permutation family and we can get a signature scheme using RSA
signature

Trapdoor OWF/OWP



Digital Signatures V

BUT THIS SCHEME IS INSECURE!!!

Trapdoor OWF/OWP



Digital Signatures VI

Two Attacks.

Note that an adversary can pick any x and compute y = fi (x).
This implies that (m′ = y , σ′ = x) is a valid forgery (although
the adversary does not have control over what message it is
signing, this is a valid forgery). This attack can be performed
just after seeing the public-key, and the adversary does not
need to see any message-signature pairs!

The scheme using RSA trapdoor one-way permutation family
has another attack. Suppose the adversary sees two
message-signature pairs (m1, σ1) and (m2, σ2). Note that
(m′ = m1 ·m2, σ

′ = σ1 · σ2) is a valid forgery!

Trapdoor OWF/OWP



Digital Signatures VII
Students in class proposed the following elegant fix.

The public-key of the new scheme is pk = (i , r), where r is a
random string of appropriate length
The signature of the message m is σ = f −1

i (r‖m)

The message-signature pair (m, σ) are verified by checking
whether r‖m is equal to fi (r)

Consider the following heuristic argument demostrating how this
scheme protects against the two attacks mentioned above.

To perform an attack similar to the first attack discussed
above, the adversary will have to pick x such that fi (x) has r
in the prefix, which should be difficult if r is sufficiently long
To perform an attack similar to the second attack discussed
above, the adversary should pick m1 and m2 such that
(r‖m1) · (r‖m2) has r in the prefix, which should again be
unlikely

Trapdoor OWF/OWP


