Lecture 35: Coding RSA
We are provided with a One_Rand_Bit() function. It outputs an unbiased independent random bit every time it is invoked.
Generate a uniformly random integer in the set \{0, 1, \ldots, 2^t - 1\}.

Random Integer \((t) \):

1. Let \(m = 0 \)
2. For \(i \in \{1, 2, \ldots, t\} \): \(m = (m \ll 1) + \text{One Rand Bit()} \)
3. Return \(m \)
Generate a uniformly random integer in the set \{0, 1, \ldots, N − 1\} with probability at least \(1 − 2^{-\lambda}\).

Random_Integer(\(N, \lambda\)):

1. Let \(t\) be such that \(2^{t-1} \leq N < 2^t\)
2. For \(i \in \{1, 2, \ldots, \lambda\}\):
 1. \(m = \text{Random_Integer}(t)\)
 2. If \((m < N)\): return \(m\)
3. Return \(-1\)
Generate a uniformly random integer in the set \mathbb{Z}_N^*. If $N = p \cdot q$, where p and q are n-bit primes, then the algorithm succeeds with probability at least $1 - 2^{-\lambda}$.

Random$_{Z\text{star}}(N, \lambda)$:

1. Let t be such that $2^{t-1} \leq N < 2^t$
2. For $i \in \{1, 2, \ldots, \lambda\}$:
 1. $m = \text{Random_Integer}(t)$
 2. If $(m < N \text{ and } \gcd(m, N) == 1)$: return m
3. Return -1
Let us assume that $\text{divide}(a, b)$ is a function that takes as input two integers a and b, and outputs (m, r), such that $m = \lfloor a/b \rfloor$ and $r = a - m \cdot b$.

Given this algorithm, let us write down the code of GCD algorithm:

GCD(a, b):

1. While ($b \neq 0$):
 1. $(m, r) = \text{divide}(a, b)$
 2. $a = b$ and $b = r$

2. Return a
Extended GCD algorithm on input \((a, b)\) will output \((g, \alpha, \beta)\) such that \(g = \alpha a + \beta b\) (over integers)

Extended_GCD\((a, b)\):

1. If \((b == 0)\): Return \((a, 1, 0)\)
2. \((m, r) = \text{divide}(a, b)\)
3. \((g', \alpha', \beta') = \text{Extended_GCD}(b, r)\)
4. Return \((g', \beta', \alpha' - m\beta')\)
Gen():

1. \(p = \text{Random_Prime}(n) \)
2. \(q = \text{Random_Prime}(n) \)
3. Compute \(N = p \cdot q \) and \(\varphi(N) = (p - 1)(q - 1) \)
4. Pick \(e = \text{Random}_{Z\star\varphi}(N) \) and compute \((g, d, \star) = \text{Extended_GCD}(e, \varphi(N)) \). If \(g \neq 1 \), then repeat this step
5. Set \(\text{pk} = (N, e) \)
6. Set \(\text{trap} = (\varphi(N), d) \)
7. Return \((\text{pk}, \text{trap}) \)
RSA Encryption II

The choosing of e succeeds with high probability if and only if $\varphi(N)$ does not have too many factors. So, it is recommended that we choose p, q as safe primes.

Definition

If both x and $2x + 1$ are primes, then x is called the Sophie Germain prime and $2x + 1$ is called a Safe prime.

The infinitude and density of these primes are open problems. They are conjectured to be polynomially dense.
RSA Encryption III

\[
\text{Enc}_{pk}(m):
\]
1. Let \(pk = (N, e) \)
2. \(r = \text{Random}_\text{Zstar}(N, 100) \)
3. If \(r = -1 \): Set \(r = 1 \)
4. Calculate \(y = r^e \)
5. \(c = m \times y \mod N \)
6. Return \((y, c)\)
Dec_{pk,\text{trap}}(c^+) :

1. Let $c^+ = (y, c)$
2. Let $pk = (N, e)$
3. Let $\text{trap} = (\varphi(N), d)$
4. Compute $\tilde{r} = y^d$
5. Compute $(1, \text{inv}(\tilde{r}), \star) = \text{Extended_GCD}(\tilde{r}, N)$
6. Return $c \times \text{inv}(\tilde{r}) \mod N$