Lecture 35: Coding RSA

Coding RSA

Assumption

- We are provided with a One_Rand_Bit() function. It outputs an unbiased independent random bit every time it is invoked.

Generate Random Integer $<2^{t}$

Generate a uniformly random integer in the set $\left\{0,1, \ldots, 2^{t}-1\right\}$. Random_Integer (t) :
(1) Let $m=0$
(2) For $i \in\{1,2, \ldots, t\}: m=(m \ll 1)+$ One_Rand_Bit ()
(3) Return m

Generate Random Integer $<N$

Generate a uniformly random integer in the set $\{0,1, \ldots, N-1\}$ with probability at least $1-2^{-\lambda}$.
Random_Integer (N, λ):
(1) Let t be such that $2^{t-1} \leqslant N<2^{t}$
(2) For $i \in\{1,2, \ldots, \lambda\}$:
(1) $m=$ Random_Integer (t)
(2) If $(m<N)$: return m
(3) Return - 1

Generate Random Integer in \mathbb{Z}_{N}^{*}

Generate a uniformly random integer in the set \mathbb{Z}_{N}^{*}. If $N=p \cdot q$, where p and q are n-bit primes, then the algorithm succeeds with probability at least $1-2^{-\lambda}$.
Random_Zstar(N, λ):
(1) Let t be such that $2^{t-1} \leqslant N<2^{t}$
(2) For $i \in\{1,2, \ldots, \lambda\}$:
(1) $m=$ Random_Integer (t)
(2) If $(m<N$ and $\operatorname{gcd}(m, N)==1)$: return m
(3) Return - 1

GCD and Extended GCD Algorithms I

- Let us assume that divide (a, b) is a function that takes as input two integers a and b, and outputs (m, r), such that $m=\lfloor a / b\rfloor$ and $r=a-m \cdot b$
- Given this algorithm, let us write down the code of GCD algorithm
$\operatorname{GCD}(a, b)$:
(1) While $(b \neq 0)$:
(1) $(m, r)=\operatorname{divide}(a, b)$
(2) $a=b$ and $b=r$
(2) Return a

GCD and Extended GCD Algorithms II

Extended GCD algorithm on input (a, b) will output (g, α, β) such that $g=\alpha a+\beta b$ (over integers)
Extended_GCD (a, b) :
(1) If $(b==0)$: Return $(a, 1,0)$
(2) $(m, r)=\operatorname{divide}(a, b)$
(3) $\left(g^{\prime}, \alpha^{\prime}, \beta^{\prime}\right)=$ Extended_GCD (b, r)
(9) Return $\left(g^{\prime}, \beta^{\prime}, \alpha^{\prime}-m \beta^{\prime}\right)$

RSA Encryption I

Gen():
(1) $p=$ Random_Prime (n)
(2) $q=$ Random_Prime (n)
(3) Compute $N=p \cdot q$ and $\varphi(N)=(p-1)(q-1)$
(3) Pick $e=\operatorname{Random}_{\mathrm{Z}} \operatorname{star} \varphi(N)$ and compute $(g, d, \star)=$ Extended_GCD $(e, \varphi(N))$. If $g \neq 1$, then repeat this step
(6) Set $\mathrm{pk}=(N, e)$
(0) Set trap $=(\varphi(N), d)$
(Return (pk, trap)

RSA Encryption II

The choosing of e succeeds with high probability if and only if $\varphi(N)$ does not have too many factors. So, it is recommended that we choose p, q as safe primes

Definition

If both x and $2 x+1$ are primes, then x is called the Sophie Germain prime and $2 x+1$ is called a Safe prime.

The infinitude and density of these primes are open problems. They are conjectured to be polynomially dense.

RSA Encryption III

$\operatorname{Enc}_{\mathrm{pk}}(m)$:
(1) Let $\mathrm{pk}=(N, e)$
(2) $r=$ Random_Zstar $(N, 100)$
(3) If $r=-1$: Set $r=1$
(9) Calculate $y=r^{e}$
(6) $c=m \times y \bmod N$
(0) Return (y, c)

RSA Encryption IV

$\operatorname{Dec}_{\text {pk,trap }}\left(c^{+}\right)$:
(1) Let $c^{+}=(y, c)$
(2) Let $\mathrm{pk}=(N, e)$
(3) Let trap $=(\varphi(N), d)$
(c) Compute $\tilde{r}=y^{d}$
(6) Compute $(1, \operatorname{inv}(\widetilde{r}), \star)=$ Extended_GCD (\widetilde{r}, N)
(6) Return $c \times \operatorname{inv}(\widetilde{r}) \bmod N$

