Lecture 35: Coding RSA

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

э

• We are provided with a One_Rand_Bit() function. It outputs an unbiased independent random bit every time it is invoked.

Generate a uniformly random integer in the set $\{0, 1, ..., 2^t - 1\}$. Random_Integer(t):

- **1** Let m = 0
- ② For $i \in \{1, 2, ..., t\}$: $m = (m \ll 1) + One_Rand_Bit()$
- 8 Return m

イロト イポト イヨト イヨト

Generate a uniformly random integer in the set $\{0, 1, ..., N-1\}$ with probability at least $1 - 2^{-\lambda}$. Random_Integer(N, λ): • Let t be such that $2^{t-1} \le N < 2^t$ • For $i \in \{1, 2, ..., \lambda\}$: • $m = \text{Random_Integer}(t)$ • If (m < N): return m

Seturn −1

Generate a uniformly random integer in the set \mathbb{Z}_N^* . If $N = p \cdot q$, where p and q are n-bit primes, then the algorithm succeeds with probability at least $1 - 2^{-\lambda}$. Random_Zstar (N, λ) : 2 Let t be such that $2^{t-1} \leq N < 2^t$ 2 For $i \in \{1, 2, ..., \lambda\}$:

m = Random_Integer(t)
If (m < N and gcd(m, N) == 1): return m

I Return −1

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Let us assume that divide(a, b) is a function that takes as input two integers a and b, and outputs (m, r), such that m = ⌊a/b⌋ and r = a m ⋅ b
- Given this algorithm, let us write down the code of GCD algorithm

```
GCD(a, b):
While (b ≠ 0):
(m, r) = divide(a, b)
a = b and b = r
2 Return a
```

Coding RSA

Extended GCD algorithm on input (a, b) will output (g, α, β) such that $g = \alpha a + \beta b$ (over integers) Extended_GCD(a, b):

• If
$$(b == 0)$$
: Return $(a, 1, 0)$

$$(g', \alpha', \beta') = \mathsf{Extended}_\mathsf{GCD}(b, r)$$

• Return
$$(g', \beta', \alpha' - m\beta')$$

(日) (同) (三) (三)

Gen():

- p = Random_Prime(n)
- **2** $q = \text{Random}_{\text{Prime}}(n)$
- Sompute $N = p \cdot q$ and $\varphi(N) = (p-1)(q-1)$
- Pick e = Randomzstarφ(N) and compute (g, d, *) = Extended_GCD(e, φ(N)). If g ≠ 1, then repeat this step
- Set pk = (N, e)
- Set trap = $(\varphi(N), d)$
- Return (pk, trap)

The choosing of *e* succeeds with high probability if and only if $\varphi(N)$ does not have too many factors. So, it is recommended that we choose *p*, *q* as safe primes

Definition

If both x and 2x + 1 are primes, then x is called the Sophie Germain prime and 2x + 1 is called a Safe prime.

The infinitude and density of these primes are open problems. They are conjectured to be polynomially dense.

 $Enc_{pk}(m)$:

- Let pk = (N, e)
- 2 $r = \text{Random}_Z\text{star}(N, 100)$
- **3** If r = -1: Set r = 1
- Calculate $y = r^e$
- $c = m \times y \mod N$
- Return (y, c)

A (1) < (1) < (1) </p>

Dec_{pk,trap} (c^+) : • Let $c^+ = (y, c)$ • Let pk = (N, e)• Let trap = $(\varphi(N), d)$

- Compute $\tilde{r} = y^d$
- Sompute $(1, inv(\tilde{r}), \star) = Extended_GCD(\tilde{r}, N)$
- Return $c \times inv(\tilde{r}) \mod N$