Lecture 34: RSA Encryption

RSA Encryption

・ロッ ・回 ・ ・ ヨ ・ ・

.⊒ →

- We pick two primes uniformly and independently at random $p, q \stackrel{s}{\leftarrow} P_n$
- We define $N = p \cdot q$
- We shall work over the group (\mathbb{Z}_N^*, \times) , where \mathbb{Z}_N^* is the set of all natural numbers < N that are relatively prime to N, and \times is integer multiplication mod N

• We pick
$$y \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*$$

- Let $\varphi(N)$ represent the size of the set \mathbb{Z}_N^* , which is (p-1)(q-1)
- We pick any e ∈ Z^{*}_{φ(N)}, that is, e is a natural number < φ(N) and is relatively prime to φ(N)
- We give (n, N, e, y) to the adversary A as ask her to find the e-th root of y, i.e., find x such that x^e = y

RSA Assumption. For any computationally bounded adversary, the above-mentioned problem is hard to solve **ADVERTING ADVENTION**

Recall: Properties

- The function $x^e \colon \mathbb{Z}_N^* \to \mathbb{Z}_N^*$ is a bijection for all e such that $gcd(e, \varphi(N)) = 1$
- Given (n, N, e, y), where y ← Z_N^{*}, it is difficult for any computationally bounded adversary to compute the *e*-th root of y, i.e., the element y^{1/e}
- But given d such that e · d = 1 mod φ(N), it is easy to compute y^{1/e}, because y^d = y^{1/e}

Now, think how we can design a key-agreement scheme using these properties. Once the key-agreement protocol is ready, we can use a one-time pad to create an public-key encryption scheme.

<ロ> (四) (四) (三) (三) (三) (三)

First, Alice and Bob establish a key that is hidden from the adversary

Note that $r = \tilde{r}$ and is hidden from an adversary based on the RSA assumption

RSA Encryption

Using this key, Alice sends the encryption of $m \in \mathbb{Z}_N^*$ using the one-time pad encryption scheme.

Since, we always have $r = \tilde{r}$, this encryption scheme always decrypts correctly. Note that $inv(\tilde{r})$ can be computed only by knowing $\varphi(N)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Putting the two together: RSA Encryption

We emphasize that this encryption scheme work only for $m \in \mathbb{Z}_N^*$. In particular, this works for all messages m that have a binary representation of length less than n-bits, becuase p and q are n-bit primes.