Lecture 33: Working Example for RSA Assumption

- We pick two primes uniformly and independently at random $p, q \stackrel{s}{\leftarrow} P_n$
- We define $N = p \cdot q$
- We shall work over the group (ℤ^{*}_N, ×), where ℤ^{*}_N is the set of all natural numbers < N that are relatively prime to N, and × is integer multiplication mod N

• We pick
$$y \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*$$

- Let $\varphi(N)$ represent the size of the set \mathbb{Z}_N^* , which is (p-1)(q-1)
- We pick any e ∈ Z^{*}_{φ(N)}, that is, e is a natural number < φ(N) and is relatively prime to φ(N)
- We give (n, N, e, y) to the adversary A as ask her to find the e-th root of y, i.e., find x such that x^e = y

RSA Assumption. For any computationally bounded adversary, the above-mentioned problem is hard to solve **ADVERTING ADVENTION**

Working Example I

- We shall use p = 3 and q = 11
- So, we have $N = p \cdot q = 33$
- Moreover, we have

 $\mathbb{Z}_{N}^{*} = \{1, 2, 4, 5, 7, 8, 10, 13, 14, 16, 17, 19, 20, 23, 25, 26, 28, 29, 31, 32\}$

- Now, $\varphi(N) = (p-1)(q-1) = 2 \cdot 10 = 20$. Verify that this is the size of \mathbb{Z}_N^*
- For this example, we shall choose e = 3 (note that 3 is relatively prime to φ(N) = 20)

Let us start the repeated squaring procedure. The first row represents each element of \mathbb{Z}_N^* and the second row is the square of the corresponding element in the first row.

x	1	2	4	5	7	8	10	13	14	16	17	19	20	23	25	26	28	29	31	32
x^2	1	4	16	25	16	31	1	4	31	25	25	31	4	1	31	16	25	16	4	1

Using repeated squaring, we compute the third row that is the fourth-power of the element in the first row.

X	1	2	4	5	7	8	10	13	14	16	17	19	20	23	25	26	28	29	31	32
x^2																				
<i>x</i> ⁴	1	16	25	31	25	4	1	16	4	31	31	4	16	1	4	25	31	25	16	1

・日・ ・ヨ・ ・ヨ・

We add a row that computes $y = x^e$ (recall that e = 3 in our case). We can obtain x^3 by multiplying $x \times x^2$.

X	1	2	4	5	7	8	10	13	14	16	17	19	20	23	25	26	28	29	31	32
x ²	1	4	16	25	16	31	1	4	31	25	25	31	4	1	31	16	25	16	4	1
x ⁴	1	16	25	31	25	4	1	16	4	31	31	4	16	1	4	25	31	25	16	1
$y = x^e = x^3$	1	8	31	26	13	17	10	19	5	4	29	28	14	23	16	20	7	2	25	32

・ 同 ト ・ 三 ト ・

We can now verify from the table that x^3 is a bijection from \mathbb{Z}_N^* to \mathbb{Z}_N^* (because 3 is relatively prime to $\varphi(N)$) We recall the following result (stated without proof) from the previous lecture.

Theorem

For any $e \in \mathbb{N}$ such that $gcd(e, \varphi(N)) = 1$ and $e < \varphi(N)$, the function $x^e \colon \mathbb{Z}_N^* \to \mathbb{Z}_N^*$ is a bijection.

Since x^e is a bijection, we can uniquely define $y^{1/e}$ for any $y \in \mathbb{Z}_N^*$. For example, if y = 19 then $y^{1/e} = 13$, where e = 3. The RSA assumption states that, for a random y, finding $y^{1/e}$ is a computationally difficult task!

・ロッ ・雪 ・ ・ ヨ ・

Let *d* be an integer $\langle \varphi(N) \rangle$ such that $e \cdot d = 1 \mod N$. In our case, we have d = 7.

Let us calculate a row corresponding to x^7 . We can calculate this by multiplying $x \times x^2 \times x^4$.

x	1	2	4	5	7	8	10	13	14	16	17	19	20	23	25	26	28	29	31	32
x ²	1	4	16	25	16	31	1	4	31	25	25	31	4	1	31	16	25	16	4	1
<i>x</i> ⁴	1	16	25	31	25	4	1	16	4	31	31	4	16	1	4	25	31	25	16	1
$y = x^e = x^3$	1	8	31	26	13	17	10	19	5	4	29	28	14	23	16	20	7	2	25	32
$x^d = x^7$	1	29	16	14	28	2	10	7	20	25	8	13	26	23	31	5	19	17	4	32

・ 同 ト ・ ヨ ト ・ ヨ ト

Note that *d* is also relatively prime to $\varphi(N)$, and, hence, the mapping x^d is also a bijection.

イロト イポト イヨト イヨト

But note that, given d, we can easily compute the *e*-th root of y. Check that y^d is identical to $y^{1/e}$.

x	1	2	4	5	7	8	10	13	14	16	17	19	20	23	25	26	28	29	31	32
x ²	1	4	16	25	16	31	1	4	31	25	25	31	4	1	31	16	25	16	4	1
<i>x</i> ⁴	1	16	25	31	25	4	1	16	4	31	31	4	16	1	4	25	31	25	16	1
$y = x^e = x^3$	1	8	31	26	13	17	10	19	5	4	29	28	14	23	16	20	7	2	25	32
$x^d = x^7$	1	29	16	14	28	2	10	7	20	25	8	13	26	23	31	5	19	17	4	32
$y^d = y^7$	1	2	4	5	7	8	10	13	14	16	17	19	20	23	25	26	28	29	31	32

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Quick Summary

- The function $x^e \colon \mathbb{Z}_N^* \to \mathbb{Z}_N^*$ is a bijection for all e such that $gcd(e, \varphi(N)) = 1$
- Given (n, N, e, y), where y ← Z^{*}_N, it is difficult for any computationally bounded adversary to compute the *e*-th root of y, i.e., the element y^{1/e}
- But given d such that e · d = 1 mod φ(N), it is easy to compute y^{1/e}, because y^d = y^{1/e}

Now, think how we can design a key-agreement scheme using these properties. Once the key-agreement protocol is ready, we can use a one-time pad to create an public-key encryption scheme.

<ロ> (四) (四) (三) (三) (三) (三)