Lecture 33: Working Example for RSA Assumption

Recall: RSA Assumption

- We pick two primes uniformly and independently at random $p, q \stackrel{\S}{\leftarrow} P_{n}$
- We define $N=p \cdot q$
- We shall work over the group $\left(\mathbb{Z}_{N}^{*}, \times\right)$, where \mathbb{Z}_{N}^{*} is the set of all natural numbers $<N$ that are relatively prime to N, and \times is integer multiplication $\bmod N$
- We pick $y \stackrel{\Phi}{\leftarrow} \mathbb{Z}_{N}^{*}$
- Let $\varphi(N)$ represent the size of the set \mathbb{Z}_{N}^{*}, which is $(p-1)(q-1)$
- We pick any $e \in \mathbb{Z}_{\varphi(N)}^{*}$, that is, e is a natural number $<\varphi(N)$ and is relatively prime to $\varphi(N)$
- We give (n, N, e, y) to the adversary \mathcal{A} as ask her to find the e-th root of y, i.e., find x such that $x^{e}=y$

RSA Assumption. For any computationally bounded adversary, the above-mentioned problem is hard to solve

Working Example I

- We shall use $p=3$ and $q=11$
- So, we have $N=p \cdot q=33$
- Moreover, we have

$$
\mathbb{Z}_{N}^{*}=\{1,2,4,5,7,8,10,13,14,16,17,19,20,23,25,26,28,29,31,32\}
$$

- Now, $\varphi(N)=(p-1)(q-1)=2 \cdot 10=20$. Verify that this is the size of \mathbb{Z}_{N}^{*}
- For this example, we shall choose $e=3$ (note that 3 is relatively prime to $\varphi(N)=20$)

Working Example II

Let us start the repeated squaring procedure. The first row represents each element of \mathbb{Z}_{N}^{*} and the second row is the square of the corresponding element in the first row.

x	1	2	4	5	7	8	10	13	14	16	17	19	20	23	25	26	28	29	31	32
x^{2}	1	4	16	25	16	31	1	4	31	25	25	31	4	1	31	16	25	16	4	1

Working Example III

Using repeated squaring, we compute the third row that is the fourth-power of the element in the first row.

x	1	2	4	5	7	8	10	13	14	16	17	19	20	23	25	26	28	29	31	32
x^{2}	1	4	16	25	16	31	1	4	31	25	25	31	4	1	31	16	25	16	4	1
x^{4}	1	16	25	31	25	4	1	16	4	31	31	4	16	1	4	25	31	25	16	1

Working Example IV

We add a row that computes $y=x^{e}$ (recall that $e=3$ in our case). We can obtain x^{3} by multiplying $x \times x^{2}$.

x	1	2	4	5	7	8	10	13	14	16	17	19	20	23	25	26	28	29	31

Working Example V

We can now verify from the table that x^{3} is a bijection from \mathbb{Z}_{N}^{*} to \mathbb{Z}_{N}^{*} (because 3 is relatively prime to $\varphi(N)$)
We recall the following result (stated without proof) from the previous lecture.

Theorem

For any $e \in \mathbb{N}$ such that $\operatorname{gcd}(e, \varphi(N))=1$ and $e<\varphi(N)$, the function $x^{e}: \mathbb{Z}_{N}^{*} \rightarrow \mathbb{Z}_{N}^{*}$ is a bijection.

Since x^{e} is a bijection, we can uniquely define $y^{1 / e}$ for any $y \in \mathbb{Z}_{N}^{*}$. For example, if $y=19$ then $y^{1 / e}=13$, where $e=3$.
The RSA assumption states that, for a random y, finding $y^{1 / e}$ is a computationally difficult task!

Working Example VI

Let d be an integer $<\varphi(N)$ such that $e \cdot d=1 \bmod N$. In our case, we have $d=7$.
Let us calculate a row corresponding to x^{7}. We can calcualte this by multiplying $x \times x^{2} \times x^{4}$.

x	1	2	4	5	7	8	10	13	14	16	17	19	20	23	25	26	28	29	31	32
x^{2}	1	4	16	25	16	31	1	4	31	25	25	31	4	1	31	16	25	16	4	1
x^{4}	1	16	25	31	25	4	1	16	4	31	31	4	16	1	4	25	31	25	16	1
$y=x^{e}=x^{3}$	1	8	31	26	13	17	10	19	5	4	29	28	14	23	16	20	7	2	25	32
$x^{d}=x^{7}$	1	29	16	14	28	2	10	7	20	25	8	13	26	23	31	5	19	17	4	32

Working Example VII

Note that d is also relatively prime to $\varphi(N)$, and, hence, the mapping x^{d} is also a bijection.

Working Example VIII

But note that, given d, we can easily compute the e-th root of y. Check that y^{d} is identical to $y^{1 / e}$.

x	1	2	4	5	7	8	10	13	14	16	17	19	20	23	25	26	28	29	31	32
x^{2}	1	4	16	25	16	3	1	4	4	31	25	25	31	4	1	31	16	25	16	4
x^{4}	1	16	25	31	25	4	1	16	4	31	31	4	16	1	4	25	31	25	16	1
$y=x^{e}=x^{3}$	1	8	31	26	13	17	10	19	5	4	29	28	14	23	16	20	7	2	25	32
$x^{d}=x^{7}$	1	29	16	14	28	2	10	7	20	25	8	13	26	23	31	5	19	17	4	32
$y^{d}=y^{7}$	1	2	4	5	7	8	10	13	14	16	17	19	20	23	25	26	28	29	31	32

Quick Summary

- The function $x^{e}: \mathbb{Z}_{N}^{*} \rightarrow \mathbb{Z}_{N}^{*}$ is a bijection for all e such that $\operatorname{gcd}(e, \varphi(N))=1$
- Given (n, N, e, y), where $y \stackrel{\$}{\leftarrow} \mathbb{Z}_{N}^{*}$, it is difficult for any computationally bounded adversary to compute the e-th root of y, i.e., the element $y^{1 / e}$
- But given d such that $e \cdot d=1 \bmod \varphi(N)$, it is easy to compute $y^{1 / e}$, because $y^{d}=y^{1 / e}$

Now, think how we can design a key-agreement scheme using these properties. Once the key-agreement protocol is ready, we can use a one-time pad to create an public-key encryption scheme.

