## Lecture 32: Factorization \& RSA Assumptions

- In the previous lectures we have seen how to generate a random $n$-bit prime number
- We also saw how to efficiently test whether a number is a prime number or a composite number (basic Miller-Rabin Test)


## Summary

- Today we will see two new computational hardness assumptions: Hardness of Factorization and the RSA Assumption


## Hardness of Factorization I

- The hardness of factorization, intuitively, states the following: Any computational adversary given as input $N$, the product of two random $n$-bit prime numbers, shall not be able to factor it (except with exponentially low probability)


## Hardness of Factorization II

- Formally, consider the following experiment. Let $P_{n}$ represent the set of all primes that need $n$-bits in their binary representation.

Honest Challenger
Adversary $\mathcal{A}$

$$
p, q \stackrel{\S}{\leftarrow} P_{n}
$$

$$
N=p \cdot q \quad N, n
$$

$$
p^{\prime}, q^{\prime}
$$

$$
z=\left(N==p^{\prime} \cdot q^{\prime}\right)
$$

- Hardness of Factorization Assumption. For all computationally efficient adversaries $\mathcal{A}$, the probability of $z=1$ is exponentially small in $n$


## Hardness of Factorization III

Notes.

- There might be bad primes for which it is easy to factorize $N$. But this assumption states that it is hard to factorize when $p, q$ are picked uniformly at random from $P_{n}$
- The (decision version of the) factorization problem is conjectured to a problem that lies in NP $\backslash P$ (i.e., outside $P$ but in NP) and is not NP-complete


## RSA Assumption I

- Let $N$ be the product of two $n$-bit primes numbers $p, q$ chosen uniformly at random from the set $P_{n}$
- Let $\varphi(N)=(p-1)(q-1)$ be the number of elements in $\mathbb{Z}_{N}^{*}$ (the set of integers that are relatively prime to $N$ )
- We shall state the following result without proof


## Claim

Let $e \in\{1,2, \ldots, \varphi(N)-1\}$ be any integer that is relatively prime to $\varphi(N)$. Then, the function $x^{e}$ from the domain $\mathbb{Z}_{N}^{*}$ to the range $\mathbb{Z}_{N}^{*}$ is a bijection.

## RSA Assumption II

- The RSA Assumption states the following.

Honest Challenger

$$
\begin{aligned}
& p, q \stackrel{\S}{\leftarrow} P_{n} \\
& N=p \cdot q \\
& e \stackrel{\S}{\leftarrow}^{\leftarrow} \mathbb{Z}_{\varphi}^{*}(N) \\
& y \stackrel{s}{\leftarrow} \mathbb{Z}_{N}^{*} \\
& N, n, e, y \\
& x \\
& z=\left(y==x^{e}\right)
\end{aligned}
$$

- RSA Assumption. For any computationally bounded adversary $\mathcal{A}$, the probability that $z=1$ is exponentially small


## RSA Assumption: Worked-out Example I

- Suppose $N=3 \cdot 11=33$
- Then, we have $\varphi(N)=2 \cdot 10=20$
- Note that $\mathbb{Z}_{N}^{*}=$ $\{1,2,4,5,7,8,10,13,14,16,17,19,20,23,25,26,28,29,31,32\}$
- Suppose $e=3$
- Let $d$ be such that $e \cdot d=1 \bmod \varphi(N)$. So, we have $d=7$


## RSA Assumption: Worked-out Example II

First, we want to show that $x^{e}$ is a bijection from the domain $\mathbb{Z}_{N}^{*}$ to the range $\mathbb{Z}_{N}^{*}$
Then, we want to show that, given $d$, we can find $y^{1 / e}$ efficiently

| $x$ | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 13 | 14 | 16 | 17 | 19 | 20 | 23 | 25 | 26 | 28 | 29 | 31 | 32 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x^{2}$ | 1 | 4 | 16 | 25 | 16 | 31 | 1 | 4 | 31 | 25 | 25 | 31 | 4 | 1 | 31 | 16 | 25 | 16 | 4 | 1 |
| $y=x^{e}=x^{3}$ | 1 | 8 | 31 | 26 | 13 | 17 | 10 | 19 | 5 | 4 | 29 | 28 | 14 | 23 | 16 | 20 | 7 | 2 | 25 | 32 |
| $x^{4}$ | 1 | 16 | 25 | 31 | 25 | 4 | 1 | 16 | 4 | 31 | 31 | 4 | 16 | 1 | 4 | 25 | 31 | 25 | 16 | 1 |
| $x^{d}=x^{7}$ | 1 | 29 | 16 | 14 | 28 | 2 | 10 | 7 | 20 | 25 | 8 | 13 | 26 | 23 | 31 | 5 | 19 | 17 | 4 | 32 |
| $y^{7}$ | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 13 | 14 | 16 | 17 | 19 | 20 | 23 | 25 | 26 | 28 | 29 | 31 | 32 |

