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Recall

In the previous lectures we have seen how to generate a
random n-bit prime number
We also saw how to efficiently test whether a number is a
prime number or a composite number (basic Miller–Rabin
Test)
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Summary

Today we will see two new computational hardness
assumptions: Hardness of Factorization and the RSA
Assumption
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Hardness of Factorization I

The hardness of factorization, intuitively, states the following:
Any computational adversary given as input N, the product of
two random n-bit prime numbers, shall not be able to factor it
(except with exponentially low probability)
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Hardness of Factorization II

Formally, consider the following experiment. Let Pn represent
the set of all primes that need n-bits in their binary
representation.

Honest Challenger Adversary A

p, q
$← Pn

N = p · q
N, n

p′, q′

z = (N == p′ · q′)

Hardness of Factorization Assumption. For all
computationally efficient adversaries A, the probability of
z = 1 is exponentially small in n
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Hardness of Factorization III

Notes.

There might be bad primes for which it is easy to factorize N.
But this assumption states that it is hard to factorize when
p, q are picked uniformly at random from Pn

The (decision version of the) factorization problem is
conjectured to a problem that lies in NP \ P (i.e., outside P
but in NP) and is not NP-complete
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RSA Assumption I

Let N be the product of two n-bit primes numbers p, q chosen
uniformly at random from the set Pn

Let ϕ(N) = (p − 1)(q − 1) be the number of elements in Z∗N
(the set of integers that are relatively prime to N)

We shall state the following result without proof

Claim
Let e ∈ {1, 2, . . . , ϕ(N)− 1} be any integer that is relatively prime
to ϕ(N). Then, the function xe from the domain Z∗N to the range
Z∗N is a bijection.
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RSA Assumption II

The RSA Assumption states the following.

Honest Challenger Adversary A

p, q
$← Pn

N = p · q

e
$← Z∗ϕ(N)

y
$← Z∗N

N, n, e, y

x

z = (y == xe)

RSA Assumption. For any computationally bounded
adversary A, the probability that z = 1 is exponentially small
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RSA Assumption: Worked-out Example I

Suppose N = 3 · 11 = 33

Then, we have ϕ(N) = 2 · 10 = 20

Note that Z∗N =
{1, 2, 4, 5, 7, 8, 10, 13, 14, 16, 17, 19, 20, 23, 25, 26, 28, 29, 31, 32}
Suppose e = 3

Let d be such that e · d = 1 mod ϕ(N). So, we have d = 7
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RSA Assumption: Worked-out Example II

First, we want to show that xe is a bijection from the domain Z∗N
to the range Z∗N
Then, we want to show that, given d , we can find y1/e efficiently

x 1 2 4 5 7 8 10 13 14 16 17 19 20 23 25 26 28 29 31 32
x2 1 4 16 25 16 31 1 4 31 25 25 31 4 1 31 16 25 16 4 1
y = xe = x3 1 8 31 26 13 17 10 19 5 4 29 28 14 23 16 20 7 2 25 32
x4 1 16 25 31 25 4 1 16 4 31 31 4 16 1 4 25 31 25 16 1
xd = x7 1 29 16 14 28 2 10 7 20 25 8 13 26 23 31 5 19 17 4 32
y7 1 2 4 5 7 8 10 13 14 16 17 19 20 23 25 26 28 29 31 32
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