Lecture 32: Factorization & RSA Assumptions

Factorization & RSA Assumptions

▶ < ∃ >

< ∃⇒

- In the previous lectures we have seen how to generate a random *n*-bit prime number
- We also saw how to efficiently test whether a number is a prime number or a composite number (basic Miller-Rabin Test)

イロト イポト イヨト イヨト

-

• Today we will see two new computational hardness assumptions: Hardness of Factorization and the RSA Assumption

• The hardness of factorization, intuitively, states the following: Any computational adversary given as input *N*, the product of two random *n*-bit prime numbers, shall not be able to factor it (except with exponentially low probability)

・ 同 ト ・ ヨ ト ・ ヨ ト

Hardness of Factorization II

• Formally, consider the following experiment. Let P_n represent the set of all primes that need *n*-bits in their binary representation.

 Hardness of Factorization Assumption. For all computationally efficient adversaries A, the probability of z = 1 is exponentially small in n

・ ロ ト ・ 一手 ト ・ 一下 ・ ・ 日 ト

Notes.

- There might be <u>bad</u> primes for which it is easy to factorize N. But this assumption states that it is hard to factorize when p, q are picked uniformly at random from P_n
- The (decision version of the) factorization problem is conjectured to a problem that lies in NP \setminus P (i.e., outside P but in NP) and is <u>not</u> NP-complete

・ロト ・ 一日 ・ ・ 日 ・

- Let *N* be the product of two *n*-bit primes numbers *p*, *q* chosen uniformly at random from the set *P*_n
- Let φ(N) = (p − 1)(q − 1) be the number of elements in Z^{*}_N (the set of integers that are relatively prime to N)
- We shall state the following result without proof

Claim

Let $e \in \{1, 2, ..., \varphi(N) - 1\}$ be any integer that is relatively prime to $\varphi(N)$. Then, the function x^e from the domain \mathbb{Z}_N^* to the range \mathbb{Z}_N^* is a bijection.

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

RSA Assumption II

• The RSA Assumption states the following.

• **RSA Assumption**. For any computationally bounded adversary A, the probability that z = 1 is exponentially small

・ロッ ・雪 ・ ・ ヨ ・ ・ ロ ・

RSA Assumption: Worked-out Example I

- Suppose $N = 3 \cdot 11 = 33$
- Then, we have $\varphi(N) = 2 \cdot 10 = 20$
- Note that $\mathbb{Z}_N^* = \{1, 2, 4, 5, 7, 8, 10, 13, 14, 16, 17, 19, 20, 23, 25, 26, 28, 29, 31, 32\}$
- Suppose *e* = 3
- Let d be such that $e \cdot d = 1 \mod \varphi(N)$. So, we have d = 7

・ロッ ・雪ッ ・ヨッ

First, we want to show that x^e is a bijection from the domain \mathbb{Z}_N^* to the range \mathbb{Z}_N^*

Then, we want to show that, given d, we can find $y^{1/e}$ efficiently

X	1	2	4	5	7	8	10	13	14	16	17	19	20	23	25	26	28	29	31	32
x ²	1		1	25																1
$y = x^e = x^3$	1	8	31	26	13	17	10	19	5	4	29	28	14	23	16	20	7	2	25	32
x ⁴	1	16	25	31	25	4	1	16	4	31	31	4	16	1	4	25	31	25	16	1
$x^d = x^7$	1	29	16	14	28	2	10	7	20	25	8	13	26	23	31	5	19	17	4	32
y ⁷	1	2	4	5	7	8	10	13	14	16	17	19	20	23	25	26	28	29	31	32

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・