

Recall

In the previous lecture we considered an efficient randomized
algorithm to generate prime numbers that need n-bits in their
binary representation

This algorithm sampled a random element in the range
{on=12n=1 4+ 1 ...,2" — 1} and test whether it is a prime
number or not

By the Prime Number Theorem, we are extremely likely to hit
a prime number

So, all that remains is an algorithm to test whether the
random sample we have chosen is a prime number or not

Miller—Rabin Test

Primality Testing

@ Given an n-bit number N as input, we have to ascertain
whether N is a prime number or not in time polynomial in n

@ Only in 2002, Agrawal-Kayal-Saxena constructed a
deterministic polynomial time algorithm for primality testing.
That is, the algorithm will always run in time polynomial in n.
For any input N (that has n-bits in its binary representation),
if N is a prime number, the AKS primality testing algorithm
will return 1; otherwise (if, the number N is a composite
number), the AKS primality testing algorithm will return 0. In
practice, this algorithm is not used for primality testing
because this turns out to be too slow.

@ In practice, we use a randomized algorithm, namely, the
Miller—Rabin Test, that successfully distinguishes primes from
composites with very high probability. In this lecture, we will
study a basic version of this Miller—Rabin primality test.

Miller—Rabin Test

Assurance of Miller—Rabin Test

Miller—Rabin outputs 1 to indicate that it has classified the input N
as a prime. It Miller—Rabin outputs 0, then it indicates that it has
classified N as a composite number.

N is Miller—Rabin outputs
: 1 with probability 1
Prime 0 with probability 0
. o 5T
Composite 1 with probability < 2

0 with probability > 1 —27¢

So, if N is a prime, then Miller—Rabin algorithm is always correct.
On the other hand, if N is a composite number, then Miller—Rabin
algorithm correctly classifies it as a composite number with
probability > (1 —27%), where t is an input it takes. Intuitively, the
Miller—Rabin only sometimes incorrectly classifies composite
numbers as primes numbers.

Miller—Rabin Test

Basic Miller—Rabin Test |

@ In today's lecture, we shall cover a basic form of Miller—Rabin
primality testing algorithm

@ This algorithm mimics the performance of the actual test on
all inputs except a small set of bad composite numbers,
namely, Carmichael Numbers. On all other inputs, it replicates
the performance of the actual Miller—-Rabin Test

@ For example, our basic algorithm will correctly identify prime
number with probability 1. Moreover, for any composite
number that is not a Carmichael number, it will correctly
classify it as a composite number with probability > (1 — 27%)

@ Our basic algorithm goes horribly wrong if the input N is a
Carmichael number. It will incorrectly classify N as a prime
number with probability 1.

Miller—Rabin Test

Basic Miller—Rabin Test Il

Intuition Underlying the Basic Construction.

o Note that if N is a prime then we know that =1 =1 mod p,
forallae {1,2,...,p—1}

@ (We shall state this next statement without a proof) If N is a
composite number that is not a Carmichael number, then at
least half the elements a € {1,2,..., N — 1} have the property
that aN"1 £ 1 mod N

@ So, if we pick a random a € {1,2,..., N — 1} and compute
aV=1 mod N, then

© If N is a prime, then it is always 1
@ If N is a composite that is not a Carmichael number, then it is
= 1 with probability at least 1/2

Miller—Rabin Test

Basic Miller—Rabin Test ||

Basic Miller—-Rabin Primality Testing

IsPrime(N, t):
Q@ Fori=1tot:
@ Sample a& {1,2,...,N—1}
@ If a¥~1 mod N # 1: Return 0
© Return 1

Miller—Rabin Test

Basic Miller—Rabin Test |V

Analysis.

@ Suppose N is a prime number. Then the test aV~!

mod N =1, for all a € {1,2,..., N — 1}. Hence, the output
of the algorithm is 1

@ Suppose N is a composite number that is not a Carmichael
number. Then, with probability > 1/2, the inner loop samples
a such that a¥=1 mod N # 1. So, the inner loop does not
return 0, with probability < 1/2. Any one of the t-runs of the
inner loop does not return 0, with probability < 27f. Hence,
the probability that the basic test returns 1 (ie, the algorithm
incorrectly classifies a composite N as a prime number) is
<27t

Miller—Rabin Test

Carmichael Numbers

@ Carmichael numbers are composite numbers for which our basic algorithm
fails

@ There are infinitely many Carmichael numbers (otherwise, our basic
algorithm could have simply checked whether N lies in this finite list of
Carmichael numbers)

Definition (Carmichael Number)

The composite number N is a Carmichael number if ¥~ =1 mod N, for all
ae{1,2,...,N—1}

@ C(X) represents the number of Carmichael number < X. Erdés proved
an upper-bound on C(X)
X

Mloglogx)’
exp (x%)
og x

where N = 2% and A > 0 is a constant.

C(X) <

@ So, it is highly unlikely that a random number generated from the set
{1,...,2¥ — 1} is a Carmichael number

Miller—Rabin Test

Analysis of Basic Algorithm with Random Input

@ Recall that our basic algorithm is incorrect only for Carmichael
numbers

@ We saw that Carmichael numbers are very rare

@ So, when the input to our basic Rabin—Miller primality testing
algorithm is chosen uniformly at random, then it works
correctly with high probability

@ The actual Rabin—Miller primality testing algorithm will not be
covered in this course. Interested students are encouraged to
read online resources on this algorithm.

Miller—Rabin Test

A worked out example for N = 15

e Fora=1,2,3,...,14, we write down the values of a1

mod N
1,4,9,1,10,6,4,4,6,10,1,9,4,1
@ Only a € {1,4,11,14} have a1 = mod N
o 10-out-of-14 elements in {1,2,...,14} have a"~1 # mod N

Miller—Rabin Test

