
Lecture 30: Hybrid Encryption and Prime Number
Generation

Hybrid Encryption & Primes



Recall: ElGamal Encryption I

We begin by recalling the ElGamal Public-key Encryption

Recall that to describe a private-key encryption scheme we had
to provide the algorithms (Gen,Enc,Dec). Similarly, to
describe a public-key encryption scheme, we will have to
provide the (Gen,Enc,Dec) algorithms

Assume that the DDH Assumption holds for the group (G , ◦)
of size N, and the group G has a generator g

For perspective, N = 2n, where n = 1024. Our algorithms
have to be polynomial in n and the adversary, to break the
scheme, has to invest roughly 2constant·n effort

Hybrid Encryption & Primes



Recall: ElGamal Encryption II

Generation Algorithm.
Recall that in the private-key encryption scheme the generation algorithm
Gen() outputs the secret-key for the encryption scheme. In public-key
encryption, the generation algorithm has to output the public-key pk for
the scheme. Additionally, it has to output the “trapdoor” trap that assists
the receiver to decrypt the cipher-text. If such a trapdoor does not exist,
then Bob gets no additional advantage over an eavesdropper to decrypt
the cipher-text.

Gen():

1 Sample b
$←{0, 1, 2, . . . ,N − 1}

2 Compute B = gb (using repeated squaring technique)
3 Return (pk = B, trap = b)

Now, the receiver can broadcast the pk to everyone and keep trap secret with
herself to assist in the decryption algorithm

Hybrid Encryption & Primes



Recall: ElGamal Encryption III

Encryption Algorithm.
Recall that in the private-key encryption scheme the encryption algorithm
takes two inputs (the secret-key and the message) Encsk(m). In the
public-key encryption, it will take the public-key and the message as input
and output the encryption.

Encpk(m):

1 Sample a
$←{0, 1, 2, . . . ,N − 1}

2 Compute A = ga (using repeated squaring technique)
3 Compute mask = pka (using repeated squaring technique)
4 Return the cipher-text c = (A,m ◦mask)

In the ElGamal encryption scheme pk = B. Note that each time the encryption
algorithm is invoked, it will create a new random mask.
If the same mask is generated in two different invocations of the encryption
algorithm, then it must be the case that the same A was generate in those two

Hybrid Encryption & Primes



Recall: ElGamal Encryption IV

invocations. That implies that the same a was generate in those two
invocations, which has probability

√
2−n = 2−n/2 by the birthday bound)

Hybrid Encryption & Primes



Recall: ElGamal Encryption V

Decryption Algorithm.
Recall that in the private-key encryption scheme the decryption algorithm
takes two inputs (the secret-key and the cipher-text) Decsk(c). In the
public-key encryption, it will take the cipher-text and the trapdoor
generated during the generation procedure as input.

Dectrap(Ã, c̃):

1 Compute m̃ask(Ã)trap

2 Return c̃ ◦ inv(m̃ask)

Recall that trap = b. If Ã = g a, then m̃ask = g ab.

Hybrid Encryption & Primes



Hybrid Encryption I

We will combine any public-key encryption scheme with any
private-key encryption scheme to create a new public-key
encryption (called, the hybrid-encryption scheme)

We emphasize that any public-key encryption scheme can be
used. It need not be the ElGamal Scheme. You can choose
any encryption scheme that you prefer.

The benefit of hybrid-encryption is that it allows us to
combine two encryption scheme in a modular fashion.

Suppose the public-key encryption scheme is provided by the
triplet of algorithms

(Gen(pub),Enc(pub),Dec(pub))

Hybrid Encryption & Primes



Hybrid Encryption II

Suppose the private-key encryption scheme is provided by the
triplet of algorithms

(Gen(priv),Enc(priv),Dec(priv))

Now, we need to describe the hybrid-encryption scheme
algorithms

(Gen(hyb),Enc(hyb),Dec(hyb))

Hybrid Encryption & Primes



Hybrid Encryption III
Let us first draw a block-diagram for intuition purpose

Public-key
Encryption

sk

pk

c1

Private-key
Encryption

m

c2

The secret-key sk will be encrypted by the public-key
encryption
The secret-key sk will be used to encryption the actual
message m using the private-key encryption

Hybrid Encryption & Primes



Hybrid Encryption IV

Generation Algorithm for Hybrid-Encryption.

Gen(hyb)():
1 Return (pk, trap) = Gen(pub)()

The receiver broadcasts pk and keeps trap safe with herself

Hybrid Encryption & Primes



Hybrid Encryption V

Encryption Algorithm for Hybrid-Encryption.

Encpk(m):
1 Generate sk = Gen(priv)()

2 Encrypt the secret-key c1 = Enc(pub)
pk (sk)

3 Encrypt the message c2 = Enc(priv)sk (m)

4 Return the cipher-test (c1, c2)

Hybrid Encryption & Primes



Hybrid Encryption VI

Decryption Algorithm for Hybrid-Encryption.

Dectrap(c̃1, c̃2):

1 Decrypt the secret-key s̃k = Dec(pub)
trap (c̃1)

2 Return the decrypted the message m̃ = Dec(priv)
s̃k

(c̃2)

Hybrid Encryption & Primes



Transition Slide

In the remaining of the lecture, we shall transition to the
introduction of RSA algorithm. We shall begin by understanding
how to generate large prime numbers, because RSA algorithm
needs access to large prime numbers. In the next lecture, we shall
see how to test whether a number is a prime number.

Hybrid Encryption & Primes



Generating Large Prime Numbers I

To read results in this slide, assume n = 1024

Our goal is to generate prime numbers that require n bits in
their binary representation.
Clarification: The number 5, for example, can be represented as 101 in
binary. So, the number 5 needs at least 3 bits in its binary representation.
The number 5 can be written as 0101 or 00101. But, the number 5 does
not need 4 or 5 bits for its binary representation. Note that a number
needs n bits in its binary representation if its n-bit binary representation
begins with 1; otherwise not.

Now, prime numbers that need n-bits in their binary
representation are in the range

{
2n/2, 2n/2 + 2, . . . , 2n − 1

}
.

To understand how large these numbers are, always remember
that the total number of atoms in the universe is less than 2266

Hybrid Encryption & Primes



Generating Large Prime Numbers II

For our algorithms to be efficient, we need our algorithms to
be polynomial in n, the number of bits needed to represent the
numbers

Hybrid Encryption & Primes



Generating Large Prime Numbers III

For today’s algorithm we shall assume that we are already
provided with an algorithm IsPrime(x) that tests whether the
number x is a prime number or not. We shall assume that this
algorithm runs in time polynomial in n, where x needs n-bits in
its binary representation.

For perspective, only very recently, we discovered a polynomial
time deterministic algorithm for IsPrime(x)

Before the discovery of this algorithm, we knew of an
efficient probabilistic algorithm that was correct with very high
probability

Despite the discovery of the polynomial time deterministic
algorithm, we still use the probabilistic algorithm in practice,
because the probabilistic algorithm is significantly faster!

Hybrid Encryption & Primes



Generating Large Prime Numbers IV

We shall use a very big result from mathematics: Prime
Number Theorem. We write an intuitive version of this result.

Theorem (Prime Number Theorem)

There exists a universal constant c such that the total number of
primes < N is roughly

c · N

logN

Let us understand the intuition of this result. There are N
natural numbers < N. Of them cN/ logN are primes. So, the
“density of primes” is

cN/ logN

N
=

c

n
,

where N = 2n. That is the density is “inverse-polynomial-in-n,”
the number of bits needed to represent N

Hybrid Encryption & Primes



Generating Large Prime Numbers V

Let us write our algorithm

GenerateRandomPrime(1n):
1 For i = 1 to t = n2/c :

1 Generate a random number x in the range
{2n−1, 2n−1 + 1, . . . , 2n − 1}

2 If IsPrime(x) then return x

2 Return −1 (to indicate failure)

We will see the justification of the value of t during the analysis of
our algorithm

Hybrid Encryption & Primes



Generating Large Prime Numbers VI

Intuition of the algorithm.
We shall attempt t times to generate a prime number. If we
fail in all of our t attempts, then we declare failure (by
returning −1)
In each attempt, we generate a random number x that needs n
bits for its binary representation. Observe that such a number
lies in the range {2n−1, 2n−1 + 1, . . . , 2n − 1}.
Clarification: Recall that we had mentioned that a number that needs n
bits in its binary representation begins with 1 in its binary representation.
So, these number lie between (and including) the two numbers A and B,

where A has binary representation 1

(n−1)-times︷ ︸︸ ︷
00· · · 0 and B has binary

representation 1

(n−1)-times︷ ︸︸ ︷
11· · · 1 . That is, A = 2n−1 and B = 2n − 1.

And we test this number x whether it is a prime number or
not. If find x is a prime number in any of our attempts, then
we return this value.

Hybrid Encryption & Primes



Analysis of our Prime Number Generation Algorithm I

First, let us find the number of choices for the number x.

Note that the size of the set{
2n−1, 2n−1 + 1, . . . , 2n − 1

}
is (2n − 1)− (2n−1) + 1 = 2n−1 = N/2.

So, we have N/2 choices for the number x , where N = 2n

Hybrid Encryption & Primes



Analysis of our Prime Number Generation Algorithm II
Secondly, let us find the number of prime numbers that
require n-bits in their binary representation.

Applying the Prime Number Theorem, the number of prime
numbers < N = 2n is given by

cN

logN
=

cN

n

Applying the Prime Number Theorem, the number of prime
numbers < (N/2) = 2n−1 is given by

c(N/2)
log(N/2)

=
cN

2(n − 1)

So, the number of prime numbers in the range
{2n−1, 2n−1 + 1, . . . , 2n − 1} is given by

cN

n
− cN

2(n − 1)
= cN

n − 2
2n(n − 1)

≈ cN
1
2n

Hybrid Encryption & Primes



Analysis of our Prime Number Generation Algorithm III

Finally, let us compute the probability of finding a prime
number in one attempt.

The probability of finding a prime number in one attempt is
given by

Number of prime numbers in the set{2n−1, 2n−1 + 1, . . . , 2n − 1}
Size of the set{2n−1, 2n−1 + 1, . . . , 2n − 1}

By our first two calculations, this expression evaluates to

cN/2n
N/2

=
c

n

So, the probability that our algorithm finds a prime number in
an attempt is c/n

Hybrid Encryption & Primes



Analysis of our Prime Number Generation Algorithm IV

The probability that the algorithm fails to find a prime in one
attempt is (

1− c

n

)
The probability that the algorithm fails to find a prime in two
attempts is (

1− c

n

)2

Hybrid Encryption & Primes



Analysis of our Prime Number Generation Algorithm V

Similarly, the probability that the algorithm fails to find a
prime in t attempts is(

1− c

n

)t

=

(
1− c

n

)n2/c

=

[(
1− c

n

)n/c
]n

=

[
1
e

]n
= exp(−n)

Here we used the fact that limx→∞

(
1− 1

x

)x
= 1

e

Hybrid Encryption & Primes



Analysis of our Prime Number Generation Algorithm VI

So, the probability that our algorithm fails to find a prime
number is exp(−n)
Recall that the number of atoms in the universe is less than
2266 or exp(185). This explains that the probability that our
algorithm fails is extremely small!

Hybrid Encryption & Primes


