
Lecture 29: 2-round Key Agreement and Public-key
Encryption

2-KA and PKE



Overview

Suppose there is a 2-round Key-Agreement protocol. This
means that there exists a protocol where

Bob sends the first message mB

Alice sends the second message mA

Now, parties can compute a secret key key that is hidden from
an eavesdropper (who got to see the first message by Bob and
the second message by Alice)
For example, Diffie-Hellman key-exchange protocol. Bob sends
mB = gb, Alice sends mA = g a, and both parties compute the
key key = g ab, but it remains hidden from the adversary.

Using this 2-round key-agreement protocol we can construct a
public-key encryption scheme. For example, using the
Diffie-Hellman key-exchange protocol, we shall construct the
ElGamal public-key encryption scheme

2-KA and PKE



First Component: 2-round Key-Agreement Protocol I

Suppose we have a protocol Π2−KA, which is a 2-round
key-agreement protocol that looks like the following

Alice Bob

mB

mA

Compute
key k

Compute
key k

Note that Π2−KA can be any 2-round key-agreement protocol.
One such example is the Diffie-Hellman key-agreement
protocol. The next slide presents this protocol in this template.

2-KA and PKE



First Component: 2-round Key-Agreement Protocol II

For example, we consider Π2−KA to be the Diffie-Hellman key
agreement protocol

Alice Bob

mB = gb

mA = ga

Compute
key k = ma

B

Compute
key k = mb

A

2-KA and PKE



Second Component: Private-key Encryption I

Suppose we have a private-key encryption scheme
(Gen,Enc,Dec). Without loss of generality, we can assume
that Gen() outputs a uniformly random key sk from a set S .
Recall that a private-key encryption scheme looks as follows

Gen ()

sk sk

c = Encsk(m)

m̃ = Decsk(c)

2-KA and PKE



Second Component: Private-key Encryption II

Consider, for example, the one-time pad encryption scheme

Gen ()

sk sk

c = m ◦ sk

m̃ = c ◦ inv(sk)

2-KA and PKE



Combining to obtain a Public-key Encryption Scheme I

If the key of the first component is random over the set S (from which the
private-key of the second-component is chosen) then we can stick together
these two protocols as follows

Alice Bob

mB

mA

Compute
key k

Compute
key k

Set sk = k Set sk = k

c = Encsk(m)

m̃ = Decsk(c)

2-KA and PKE



Combining to obtain a Public-key Encryption Scheme II

We can merge the message mA and c into one-single message. And we get the
following scheme.

Alice Bob
mB

Compute
key k

Set sk = k
mA, c = Encsk(m)

Compute
key k

Set sk = k

m̃ = Decsk(c)

2-KA and PKE



Combining to obtain a Public-key Encryption Scheme III

Every time we want to encrypt a message m, we calculate a fresh key k. And
we get the following scheme.

Alice Bob
mB

Compute
key k

Set sk = k
mA, c = Encsk(m)

Compute
key k

Set sk = k

m̃ = Decsk(c)

2-KA and PKE



Combining to obtain a Public-key Encryption Scheme IV

Finally, we interpret the message mB as the public-key for Bob. And the
messages (mA, c) as the encryption of the message m. This gives us our
public-key encryption scheme!

Alice Bob
pk = mB

Compute
key k

Set sk = k
c = (mA, c

′),

where c ′ = Encsk(m) Compute
key k

Set sk = k

m̃ = Decsk(c)

2-KA and PKE



Example I

Suppose our first component is Diffie-Hellman key-agreement protocol
and the second component is one-time pad. Then we get the following
public-key encryption scheme.

Alice Bob
pk = gb

Compute
key k = g ab

Set sk = k
c = (mA = g a, c ′ = m · g ab)

Compute
key k = g ab

Set sk = k

m̃ = c ′ · inv(g ab)

2-KA and PKE



Example II

This is the ElGamal public-key encryption scheme!

2-KA and PKE


