Lecture 28: Public-key Cryptography

Public-key Cryptography

▲□ → ▲目 → ▲目 →

э

- In private-key cryptography the secret-key sk is always established ahead of time
- The secrecy of the private-key cryptography relies on the fact that the adversary does not have access to the secret key sk
- For example, consider a private-key encryption scheme
 - The Alice and Bob generate sk \leftarrow Gen() ahead of time
 - 2 Later, when Alice wants to encrypt and send a message to Bob, she computes the cipher-text c = Enc_{sk}(m)
 - The adversary see c but gains <u>no additional information</u> about the message m
 - Bob can decrypt the message $\widetilde{m} = \text{Dec}_{sk}(c)$
 - Note that the knowledge of sk distinguishes Bob from the adversary

・ロト ・四ト ・モト・ ・モト

- If |sk| ≥ |m|, then we can construct private-key encryption schemes (like, one-time pad) that is secure against adversaries with unbounded computational power
- If |sk| = O(|m|^ε), where ε ∈ (0, 1) is a constant, then we can construction private-key encryption schemes using pseudorandom generators (PRGs)
- What if, |sk| = 0? That is, what if Alice and Bob never met? How is "Bob" any different from an "adversary"?

▲圖→ ▲国→ ▲国→

- We shall introduce the Decisional Diffie-Hellmann (DDH) Assumption and the Diffie-Hellman key-exchange protocol,
- We shall introduce the El Gamal (public-key) Encryption Scheme, and
- Finally, abstract out the design principles learned.

→ < ∃ > < ∃ >

Decisional Diffie-Hellman (DDH) Computational Hardness Assumption I

- Let (G, ○) be a group of size N that is generated by g. We represent it as (G, ○) = ⟨g⟩.
 - We shall represent $g^0 = e$, the identity of the group (G, \circ)
 - We shall use the short-hand to represent $g^i = \overbrace{g \circ g \circ \cdots \circ g}^{i}$
 - Then, we have the set $G = \left\{g^0, g^1, g^2, \dots, g^{N-1}
 ight\}$
 - We have already seen how to compute g^a efficiently, for $a \in \{0, 1, \dots, N-1\}$ (Think)
 - We can easily compute the $inv(g^a)$ (Think)
- Note that we are <u>not</u> providing the entire set *G* written as a set. This has *N* entries and is too long (for intuition, think of *N* as 1024-bit number, so *N* is roughly 2^{1024}). We only provide a succinct way to generate the group *G* by providing the generator *g*

・ロッ ・雪 ・ ・ ヨ ・

Decisional Diffie-Hellman (DDH) Computational Hardness Assumption II

Definition (Decisional Diffie-Hellman Assumption)

There exists groups $(G, \circ) = \langle g \rangle$ such that no computationally-bounded adversary can efficiently distinguish the following two distributions

- The distribution of (g^a, g^b, g^{ab}) , where $a, b \stackrel{s}{\leftarrow} \{0, 1, \dots, N-1\}$, and
- The distribution of (g^a, g^b, g^c) , where $a, b, c \stackrel{s}{\leftarrow} \{0, 1, \dots, N-1\}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Decisional Diffie-Hellman (DDH) Computational Hardness Assumption III

Remarks:

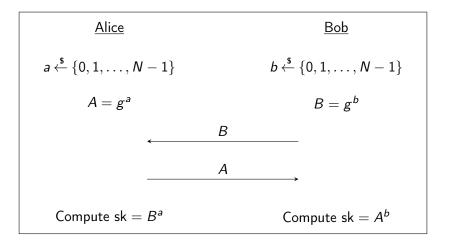
- Note that DDH Assumption is a "belief" and not a "fact." If it is proven that such groups exist where DDH assumption holds, then this proof will also imply that $P \neq NP$
- We emphasize that the DDH assumption need not hold for *any* group. There are *specially constructed groups* where DDH assumption is believed to hold
- For a fixed value of $A = g^a$ and $B = g^b$, note that there is a unique value of g^{ab}
- The definition, intuitively, states that "Given $A = g^a$ and $B = g^b$, the adversary cannot (efficiently) distinguish g^{ab} from a random $C = g^c$." Alternately, "even given $A = g^a$ and $B = g^b$, the element g^{ab} looks random to a computationally bounded adversary."

・ロト ・ 一 ト ・ モト ・ モト

Decisional Diffie-Hellman (DDH) Computational Hardness Assumption IV

- Note that it is implicit in the DDH assumption that given A = g^a and g, it is computationally inefficient to compute a = log_g A, i.e., computing the *discrete logarithm* is hard in the group (Think)
- Note that if a = 0 (i.e., A = e) then it is clear that $g^{ab} = e$ as well. Then the adversary can distinguish between g^{ab} and g^c (random c). But it is unlikely that a = 0 (or, b = 0) will be chosen. It is possible that there are particular values of a and b when an adversary can distinguish g^{ab} from g^c , but the DDH assumption says that those <u>bad values</u> of a and b are unlikely to be chosen. Thus, it is extremely crucial that a, b are picked at random from the set $\{0, 1, \ldots, N-1\}$

・ロン ・雪と ・喧と ・ 喧と



Public-key Cryptography

- Note that both parties can computed the key g^{ab}
- An adversary sees $A = g^a$ and $B = g^b$. From this adversary's perspective, the key g^{ab} is indistinguishable from the random element g^c . So, the key sk = g^{ab} is perfectly hidden from the adversary

(日) (ヨ) (ヨ)

Remarks.

- Why is this algorithm efficient? Alice can compute A from the generator g and a using the "repeated squaring technique" that you proved in HW0. Similarly, Alice can also compute the key $sk = B^a$ by repeated squaring technique.
- What advantage does the parties have over the adversary? Alice knows *a*, therefore she can compute *A* and *B^a* efficiently. Bob knows *b*, therefore he can compute *B* and *A^b* efficiently. Adversary, however, only sees *A* and *B*, and DDH states that it is computationally infeasible to distinguish *g^{ab}* from a random group element *g^c*. Note that if the adversary can compute the discrete log log_{*g*} *A*, then it can easily compute *B^{log_g A*, the key.}

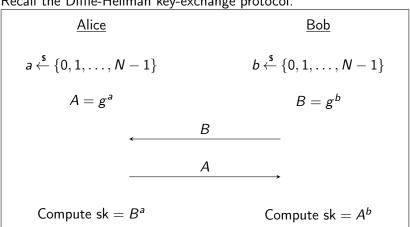
・ロン ・四 と ・ ヨ と ・ ヨ と

- At the end of the Diffie-Hellman key-exchange protocol, Alice and Bob has established a secret key sk that is hidden from the adversary
- Note that Alice and Bob did not have to meet earlier to establish this secret key (contrast this with the private-key encryption scenario, where Alice and Bob have to meet first to establish a secret-key sk)
- Now, we can use the key sk generated by the Diffie-Hellman key-exchange protocol and run any private-key cryptographic primitive using the secret key sk
 - The benefit is that Alice and Bob did not have to meet earlier
 - The downside is that the scheme is secure only against computationally bounded adversaries

< ロ > < 同 > < 回 > < 回 > < 回 > <

Summary of this Scheme. Run the one-time pad private-key encryption over the group (G, \circ) using the key generate by the Diffie-Hellman key-exchange protocol.

・ 同 ト ・ ヨ ト ・ ヨ ト …



Recall the Diffie-Hellman key-exchange protocol.

Public-key Cryptography

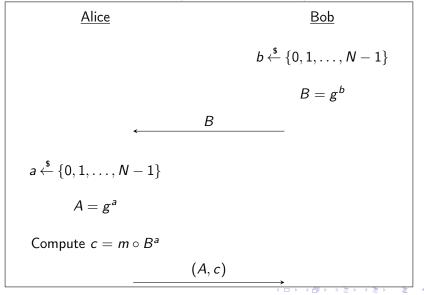
< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- To encrypt a message $m \in G$, Alice encrypts as follows $c = m \circ sk = m \circ g^{ab}$
- To decrypt a cipher-text $c \in G$, Bob decrypts as follows $\widetilde{m} = c \circ inv(sk) = c \circ g^{-ab}$

▲ 同 ▶ → 目 ▶ → ● ▶ →

ElGamal Public-key Encryption IV

We summarize this protocol (ElGamal Encryption) below.



Public-key Cryptography

- The element *B* sent by Bob is Bob's public-key. It is announced to the world by Bob only once.
- Whoever wants to send an encrypted message to Bob, uses Bob's public-key *B*
- The pair of elements (A, c) sent by Alice is the cipher-text
- Bob can easily decrypt by computing $\widetilde{m} = c \circ inv(A^b)$
- The algorithm followed by Alice is her encryption algorithm. To encrypt a new message m', Alice will choose a fresh random a' and compute $A' = g^{a'}$ and $c' = m' \circ B^{a'}$

・日本 ・日本 ・日本