
Lecture 28: Public-key Cryptography

Public-key Cryptography

Recall

In private-key cryptography the secret-key sk is always
established ahead of time
The secrecy of the private-key cryptography relies on the fact
that the adversary does not have access to the secret key sk
For example, consider a private-key encryption scheme

1 The Alice and Bob generate sk $← Gen() ahead of time
2 Later, when Alice wants to encrypt and send a message to

Bob, she computes the cipher-text c = Encsk(m)
3 The adversary see c but gains no additional information about

the message m
4 Bob can decrypt the message m̃ = Decsk(c)
5 Note that the knowledge of sk distinguishes Bob from the

adversary

Public-key Cryptography

Perspective

If |sk| > |m|, then we can construct private-key encryption
schemes (like, one-time pad) that is secure against adversaries
with unbounded computational power
If |sk| = O(|m|ε), where ε ∈ (0, 1) is a constant, then we can
construction private-key encryption schemes using
pseudorandom generators (PRGs)
What if, |sk| = 0? That is, what if Alice and Bob never met?
How is “Bob” any different from an “adversary”?

Public-key Cryptography

In this Lecture

We shall introduce the Decisional Diffie-Hellmann (DDH)
Assumption and the Diffie-Hellman key-exchange protocol,
We shall introduce the El Gamal (public-key) Encryption
Scheme, and
Finally, abstract out the design principles learned.

Public-key Cryptography

Decisional Diffie-Hellman (DDH) Computational Hardness
Assumption I

Let (G , ◦) be a group of size N that is generated by g . We
represent it as (G , ◦) = 〈g〉.

We shall represent g0 = e, the identity of the group (G , ◦)

We shall use the short-hand to represent g i =

i-times︷ ︸︸ ︷
g ◦ g ◦· · · ◦ g

Then, we have the set G =
{
g0, g1, g2, . . . , gN−1

}
We have already seen how to compute g a efficiently, for
a ∈ {0, 1, . . . ,N − 1} (Think)
We can easily compute the inv(g a) (Think)

Note that we are not providing the entire set G written as a
set. This has N entries and is too long (for intuition, think of
N as 1024-bit number, so N is roughly 21024). We only
provide a succinct way to generate the group G by providing
the generator g

Public-key Cryptography

Decisional Diffie-Hellman (DDH) Computational Hardness
Assumption II

Definition (Decisional Diffie-Hellman Assumption)

There exists groups (G , ◦) = 〈g〉 such that no
computationally-bounded adversary can efficiently distinguish the
following two distributions

The distribution of (ga, gb, gab), where
a, b

$←{0, 1, . . . ,N − 1}, and
The distribution of (ga, gb, g c), where
a, b, c

$←{0, 1, . . . ,N − 1}

Public-key Cryptography

Decisional Diffie-Hellman (DDH) Computational Hardness
Assumption III

Remarks:

Note that DDH Assumption is a “belief” and not a “fact.” If it
is proven that such groups exist where DDH assumption holds,
then this proof will also imply that P 6= NP

We emphasize that the DDH assumption need not hold for any
group. There are specially constructed groups where DDH
assumption is believed to hold

For a fixed value of A = ga and B = gb, note that there is a
unique value of gab

The definition, intuitively, states that “Given A = ga and
B = gb, the adversary cannot (efficiently) distinguish gab from
a random C = g c .” Alternately, “even given A = ga and
B = gb, the element gab looks random to a computationally
bounded adversary.”

Public-key Cryptography

Decisional Diffie-Hellman (DDH) Computational Hardness
Assumption IV

Note that it is implicit in the DDH assumption that given
A = ga and g , it is computationally inefficient to compute
a = logg A, i.e., computing the discrete logarithm is hard in
the group (Think)

Note that if a = 0 (i.e., A = e) then it is clear that gab = e as
well. Then the adversary can distinguish between gab and g c

(random c). But it is unlikely that a = 0 (or, b = 0) will be
chosen. It is possible that there are particular values of a and
b when an adversary can distinguish gab from g c , but the
DDH assumption says that those bad values of a and b are
unlikely to be chosen. Thus, it is extremely crucial that a, b
are picked at random from the set {0, 1, . . . ,N − 1}

Public-key Cryptography

DDH Key-Agreement Protocol I

Alice Bob

b
$←{0, 1, . . . ,N − 1}

B = gb

B

a
$←{0, 1, . . . ,N − 1}

A = ga

A

Compute sk = Ba Compute sk = Ab

Public-key Cryptography

DDH Key-Agreement Protocol II

Note that both parties can computed the key gab

An adversary sees A = ga and B = gb. From this adversary’s
perspective, the key gab is indistinguishable from the random
element g c . So, the key sk = gab is perfectly hidden from the
adversary

Public-key Cryptography

DDH Key-Agreement Protocol III

Remarks.
Why is this algorithm efficient? Alice can compute A from the
generator g and a using the “repeated squaring technique”
that you proved in HW0. Similarly, Alice can also compute the
key sk = Ba by repeated squaring technique.

What advantage does the parties have over the adversary?
Alice knows a, therefore she can compute A and Ba efficiently.
Bob knows b, therefore he can compute B and Ab efficiently.
Adversary, however, only sees A and B , and DDH states that it
is computationally infeasible to distinguish gab from a random
group element g c . Note that if the adversary can compute the
discrete log logg A, then it can easily compute B logg A, the key.

Public-key Cryptography

How to use the Secret Key

At the end of the Diffie-Hellman key-exchange protocol, Alice
and Bob has established a secret key sk that is hidden from
the adversary
Note that Alice and Bob did not have to meet earlier to
establish this secret key (contrast this with the private-key
encryption scenario, where Alice and Bob have to meet first to
establish a secret-key sk)
Now, we can use the key sk generated by the Diffie-Hellman
key-exchange protocol and run any private-key cryptographic
primitive using the secret key sk

The benefit is that Alice and Bob did not have to meet earlier
The downside is that the scheme is secure only against
computationally bounded adversaries

Public-key Cryptography

ElGamal Public-key Encryption I

Summary of this Scheme. Run the one-time pad private-key
encryption over the group (G , ◦) using the key generate by the
Diffie-Hellman key-exchange protocol.

Public-key Cryptography

ElGamal Public-key Encryption II

Recall the Diffie-Hellman key-exchange protocol.

Alice Bob

b
$←{0, 1, . . . ,N − 1}

B = gb

B

a
$←{0, 1, . . . ,N − 1}

A = ga

A

Compute sk = Ba Compute sk = Ab

Public-key Cryptography

ElGamal Public-key Encryption III

To encrypt a message m ∈ G , Alice encrypts as follows
c = m ◦ sk = m ◦ gab

To decrypt a cipher-text c ∈ G , Bob decrypts as follows
m̃ = c ◦ inv(sk) = c ◦ g−ab

Public-key Cryptography

ElGamal Public-key Encryption IV

We summarize this protocol (ElGamal Encryption) below.

Alice Bob

b
$←{0, 1, . . . ,N − 1}

B = gb

B

a
$←{0, 1, . . . ,N − 1}

A = ga

Compute c = m ◦ Ba

(A, c)

Public-key Cryptography

ElGamal Public-key Encryption V

The element B sent by Bob is Bob’s public-key. It is
announced to the world by Bob only once.

Whoever wants to send an encrypted message to Bob, uses
Bob’s public-key B

The pair of elements (A, c) sent by Alice is the cipher-text

Bob can easily decrypt by computing m̃ = c ◦ inv(Ab)

The algorithm followed by Alice is her encryption algorithm.
To encrypt a new message m′, Alice will choose a fresh
random a′ and compute A′ = ga′ and c ′ = m′ ◦ Ba′

Public-key Cryptography

