

Recall

@ In private-key cryptography the secret-key sk is always
established ahead of time

@ The secrecy of the private-key cryptography relies on the fact
that the adversary does not have access to the secret key sk
@ For example, consider a private-key encryption scheme

00 O 00

The Alice and Bob generate sk < Gen() ahead of time

Later, when Alice wants to encrypt and send a message to
Bob, she computes the cipher-text ¢ = Encg(m)

The adversary see ¢ but gains no additional information about
the message m

Bob can decrypt the message m = Decg(c¢)

Note that the knowledge of sk distinguishes Bob from the
adversary

Public-key Cryptography

Perspective

o Ifsk| =|m|, then we can construct private-key encryption
schemes (like, one-time pad) that is secure against adversaries
with unbounded computational power

o If|sk| = O(m|®), where ¢ € (0,1) is a constant, then we can
construction private-key encryption schemes using
pseudorandom generators (PRGs)

e What if, [sk| = 07 That is, what if Alice and Bob never met?
How is “Bob" any different from an “adversary"?

Public-key Cryptography

In this Lecture

@ We shall introduce the Decisional Diffie-Hellmann (DDH)
Assumption and the Diffie-Hellman key-exchange protocol,

e We shall introduce the EI Gamal (public-key) Encryption
Scheme, and

e Finally, abstract out the design principles learned.

Public-key Cryptography

Decisional Diffie-Hellman (DDH) Computational Hardness
Assumption |

o Let (G,0) be a group of size N that is generated by g. We
represent it as (G,0) = (g).
o We shall represent g% = e, the identity of the group (G, o)

i-times
o We shall use the short-hand to represent g' =Zogo - 02
o Then, we have the set G = {g% g%, g°,...,g" "1}
o We have already seen how to compute g2 efficiently, for
a€{0,1,...,N — 1} (Think)
o We can easily compute the inv(g?) (Think)

@ Note that we are not providing the entire set G written as a
set. This has N entries and is too long (for intuition, think of
N as 1024-bit number, so N is roughly 21024). We only
provide a succinct way to generate the group G by providing
the generator g

Public-key Cryptography

Decisional Diffie-Hellman (DDH) Computational Hardness
Assumption |l

Definition (Decisional Diffie-Hellman Assumption)

There exists groups (G, o) = (g) such that no
computationally-bounded adversary can efficiently distinguish the
following two distributions
o The distribution of (g2, g%, g?), where
a,b(i{O,l,...,N—l}, and
o The distribution of (g2, g%, g°), where
a,b,c<{0,1,...,N—1}

Public-key Cryptography

Decisional Diffie-Hellman (DDH) Computational Hardness
Assumption |l

Remarks:

@ Note that DDH Assumption is a “belief” and not a “fact.” If it
is proven that such groups exist where DDH assumption holds,
then this proof will also imply that P # NP

@ We emphasize that the DDH assumption need not hold for any
group. There are specially constructed groups where DDH
assumption is believed to hold

@ For a fixed value of A= g2 and B = g?, note that there is a
unique value of g2

@ The definition, intuitively, states that “Given A = g? and
B = g", the adversary cannot (efficiently) distinguish g2° from
a random C = g€." Alternately, “even given A = g2 and
B = g", the element g2 looks random to a computationally
bounded adversary.”

Public-key Cryptography

Decisional Diffie-Hellman (DDH) Computational Hardness
Assumption |V

@ Note that it is implicit in the DDH assumption that given
A = g? and g, it is computationally inefficient to compute
a=log, A, i.e., computing the discrete logarithm is hard in
the group (Think)

o Note that if a=0 (i.e,, A = e) then it is clear that g?* = e as
well. Then the adversary can distinguish between g2? and g¢
(random c). But it is unlikely that a =0 (or, b = 0) will be
chosen. It is possible that there are particular values of a and
b when an adversary can distinguish g2® from g€, but the
DDH assumption says that those bad values of a and b are
unlikely to be chosen. Thus, it is extremely crucial that a, b
are picked at random from the set {0,1,..., N — 1}

Public-key Cryptography

DDH Key-Agreement Protocol |

Alice Bob
a<{0,1,...,N—1} b<&{0,1,...,N—1}
A=g? B=gb
B
A
Compute sk = B? Compute sk = AP

Public-key Cryptography

DDH Key-Agreement Protocol |l

o Note that both parties can computed the key g2?

@ An adversary sees A = g? and B = gP. From this adversary’s
perspective, the key g2 is indistinguishable from the random
element g€. So, the key sk = g2” is perfectly hidden from the

adversary

Public-key Cryptography

DDH Key-Agreement Protocol Il

Remarks.

@ Why is this algorithm efficient? Alice can compute A from the
generator g and a using the “repeated squaring technique”
that you proved in HWO0. Similarly, Alice can also compute the
key sk = B? by repeated squaring technique.

@ What advantage does the parties have over the adversary?
Alice knows a, therefore she can compute A and B? efficiently.
Bob knows b, therefore he can compute B and A® efficiently.
Adversary, however, only sees A and B, and DDH states that it
is computationally infeasible to distinguish g2 from a random
group element g€. Note that if the adversary can compute the
discrete log log, A, then it can easily compute B'°gc A the key.

Public-key Cryptography

How to use the Secret Key

@ At the end of the Diffie-Hellman key-exchange protocol, Alice
and Bob has established a secret key sk that is hidden from
the adversary

@ Note that Alice and Bob did not have to meet earlier to
establish this secret key (contrast this with the private-key
encryption scenario, where Alice and Bob have to meet first to
establish a secret-key sk)

@ Now, we can use the key sk generated by the Diffie-Hellman

key-exchange protocol and run any private-key cryptographic
primitive using the secret key sk

o The benefit is that Alice and Bob did not have to meet earlier
o The downside is that the scheme is secure only against
computationally bounded adversaries

Public-key Cryptography

ElGamal Public-key Encryption |

Summary of this Scheme. Run the one-time pad private-key
encryption over the group (G, o) using the key generate by the
Diffie-Hellman key-exchange protocol.

Public-key Cryptography

ElGamal Public-key Encryption Il

Recall the Diffie-Hellman key-exchange protocol.

Alice Bob
a<{0,1,...,N—1} b<&{0,1,...,N—1}
A=g? B=gb
B
A
Compute sk = B? Compute sk = AP

Public-key Cryptography

ElGamal Public-key Encryption Il

@ To encrypt a message m € G, Alice encrypts as follows
c=mosk=mog?®

@ To decrypt a cipher-text ¢ € G, Bob decrypts as follows
m = coinv(sk) = cog™2

Public-key Cryptography

ElGamal Public-key Encryption IV

We summarize this protocol (ElGamal Encryption) below.

Alice Bob

b<&{0,1,...,N—1}

B=g"
B
a<{0,1,...,N—1}
A=g?
Compute ¢ = mo B?
(A, c)

Public-key Cryptography

ElGamal Public-key Encryption V

@ The element B sent by Bob is Bob's public-key. It is
announced to the world by Bob only once.

@ Whoever wants to send an encrypted message to Bob, uses
Bob's public-key B

@ The pair of elements (A, ¢) sent by Alice is the cipher-text
@ Bob can easily decrypt by computing m = c o inv(AP)

@ The algorithm followed by Alice is her encryption algorithm.
To encrypt a new message m’, Alice will choose a fresh
random a’ and compute A’ = g and ¢’ = m’ o B?

Public-key Cryptography

