

Recall: Summary of MAC Schemes so far

@ One-time MAC: We can construct from 2-wise independent
hash function families. These exist even against adversaries
with unbounded computational power

@ General MAC: We can construct if One-way Functions Exist.
For example, we use pseudorandom functions (using the GGM
construction) for these constructions. The GGM construction
uses length-doubling pseudorandom generators, and
pseudorandom generators can be constructed from one-way
functions

CBC-MAC

Today's Summary

Today we shall construct MACs using pseudorandom function
(PRF) family and the Cipher Block Chaining (CBC) technique

CBC-MAC

MAC for Fixed-length Messages |

What we shall use

@ Pseudorandom Function Family F = {Fy, F»,
each function F;: {0,1}% — {0,1}%

What we shall construct

@ Construct a MAC scheme for n-bit messages

CBC-MAC

..., Fo}, where

MAC for Fixed-length Messages |l

@ Gen(). Create a key for the pseudorandom function family.
Return sk < {1,2,...,a}

e Macg(m). Interpret m = (my, ma, ..., my), where each m; is
B-bits long and ¢ = [n/B]
m my m3 ce my
g | ‘f—”?
Fsk Fsk Fsk : 3 Fsk

CBC-MAC

MAC for Fixed-length Messages Il

o Verg(m, 7). Let m= (my, ma,..., n~72;), where each m; is
B-bit long. Return whether 7 == 7/ or not, where 7’ is
calculated as below.

ma moy ms3 s mz
|
|
|
1
|
Fsk Fsk Fsk : Fsk
|
|
|
|
77777 l
!

CBC-MAC

MAC for Fixed-length Messages IV

Attack on this Scheme using Arbitrary-length Messages.

The adversary sees the message-tag pair (m, 7), where
m=(my,my,...,mg)

The adversary sees the message-tag pair (m’, 7’), where

m = (my,my,....my)

The adversary computes

/ / /
m = (m1,...,m£7m1@T,mz,...,mg/)

The message-tag pair (m,7’) is a forgery (Check that this
passes verification)

CBC-MAC

MAC-ing Arbitrary-length Messages, First Construction |

What we shall use

e Pseudorandom Function Family F = {Fy, F, ..., F,}, where
each function F;: {0,1}% — {0,1}%

What we shall construct
e Construct a MAC scheme for {0, 1}"

CBC-MAC

MAC-ing Arbitrary-length Messages, First Construction ||

Intuition for the construction.
@ We shall use separate sk for each message length to “chain”
o The Gen() returns a random sk < {1,2,...,a}.

@ The pictorial summary of Macg(m) is provided in the next
slide

CBC-MAC

MAC-ing Arbitrary-length Messages, First Construction |lI

Suppose the message is m € {0,1}". It is interpreted as
(my, my, ..., my), where each m; is a B-bit string and ¢ = [n/B].
Let [n]> represent the B-bit binary string that represents the length

of m in binary.

[n]2 mi my m3 e my
a D ‘ f,,,
|
| |
|
1 |
|
|
F. sk Fy key F key F key : ! ery
|
| |
| |
|
|
,,,,, A
key T

CBC-MAC

MAC-ing Arbitrary-length Messages, First Construction |V

Note. You can use the same sk to sign messages of different length
using the algorithm presented abovel!

CBC-MAC

MAC-ing Arbitrary-length Messages, Second Construction

We append the binary representation of the length of m at the
beginning and CBC-MAC the new message. See the construction
below.

[n]2 my mo m3 cee my
N ‘ ——

Fsk Fsk Fsk Fsk : 3 Fsk
e T T

CBC-MAC

MAC-ing Arbitrary-length Messages, Second Construction |l

Adding the length at the end is INSECURE! The following
scheme is insecure.

my my m3 e my [n]2
& r
| |
| |
|
| |
|
I
Fsk Fsk Fsk : : Fsk Fsk
I
| I
| I
|
I
,,,,, o
M

CBC-MAC

MAC-ing Arbitrary-length Messages, Second Construction Il

Students are strongly recommended to construct the attack on
their own

@ Suppose the adversary the message-tag pairs on two different
n-bit messages p and g. Let the message tag pairs be

(P:(P17P27---apﬁ)a TP)
(g=1(91,92,---,q0) » 7q)

@ The adversary requests to see the tag 7, for the message m as
defined below

m:(p17p27'"7p€7[n]27r17r27"‘7rt)

We emphasize that here the adversary requests to see the
signature on a particular message. All previous attacks had the
adversary obtain message-tag pairs for arbitrary messages.

CBC-MAC

MAC-ing Arbitrary-length Messages, Second Construction [V

@ Now, the adversary can splice out (p1, ..., p¢) to replace
(q1,-..,qe) in the message m as follows
/
m = (q17q27"'7q57[n]27r1@TpEBTqar27"~7rt)

o Note that the tag of the message m’ is identical to the tag 7.,

CBC-MAC

MAC-ing Arbitrary-length Messages, Third Construction |

But a small change to the above-mentioned insecure construction is
secure.

All we need to ensure is that the key for the pseudorandom
function used to chain the message-blocks is different from the key
for the pseudorandom function used on [n],. Let key = Fg,(0) and
key’ = Fg(1). Now, consider the following construction.

CBC-MAC

MAC-ing Arbitrary-length Messages, Third Construction |l

my my m3 e my [n]2
& r
| |
| |
|
1 |
|
|
F key F key F key : ! F key F key’
|
| |
| |
|
|
,,,,, A
T

CBC-MAC

MAC-ing Arbitrary-length Messages, Third Construction Il

Check how this new construction prevents the adversarial attack
where the message length was at the end. This is crucial to ensure
that you have a good understanding of this new MAC scheme.

Benefit of having the message-length at the end. We do not
need the length of the message ahead of time. We can even MAC
messages that are coming as a stream!

CBC-MAC

