
Lecture 24: MAC for Arbitrary Length Messages

MAC Long Messages



Recall

Previous lecture, we constructed MACs for fixed length messages
The GGM Pseudo-random Function (PRF) Construction

Given. Pseudo-random Generator (PRG)
G : {0, 1}k → {0, 1}2k
We Constructed. PRF Fsk(m) using the GGM construction
from the domain {0, 1}n to the range {0, 1}k

The MAC scheme was provided by (Gen,Mac,Ver)

Gen(). Return sk $←{0, 1}k

Macsk(m). Return τ = Fsk(m)

Versk(m̃, τ̃). Return τ̃ == Fsk(m̃)

This construction is secure only for fixed-length messages
We need different secret key for every length of the message.
Otherwise, we can perform length-extension attacks

MAC Long Messages



Goal of this Lecture

Suppose we are given a MAC scheme (Gen′,Mac′,Ver′) that is
secure only for B-bit messages and generates tags of length k

We want to construct a MAC scheme (Gen,Mac,Ver) that is
secure for arbitrary length messages

MAC Long Messages



First Proposal I

The students proposed the following construction

Gen(). Return sk = Gen′()

Macsk(m).
1 Pad the message m so that the length of m is a multiple of B
2 Break m into n/B blocks (m(1),m(2), . . . ,m(n/B)) such that

each block m(i) has size B

3 For i ∈ {1, 2, . . . , n/B}: Compute τ (i) = Mac′sk(m
(i))

4 Return τ = (τ (1), τ (2), . . . , τ(n/B))

Versk(̃,τ̃).
1 Let m̃ = (m̃(1), m̃(2), . . . , m̃(t)) (each block of length B)
2 Let τ̃ = (τ̃ (1), τ̃ (2), . . . , τ̃ (t)) (each block of length k)
3 Return true if and only if for all i ∈ {1, . . . , t}, the expression

Ver′sk(m̃
(i), τ̃ (i)) is true

MAC Long Messages



First Proposal II

Attacks on the Scheme. This scheme is insecure. The students
proposed the following attacks.
Suppose the adversary sees the message
m = (m(1),m(2), . . . ,m(n/B)) and the tag
τ = (τ (1), τ (2), . . . , τ(n/B)).

1 Permuting.
The adversary can construct m′ from m by arbitrarily
permuting the blocks of the message m. The adversary can
construct the corresponding τ ′ from τ by performing the same
permutation of blocks on the tag τ .

MAC Long Messages



First Proposal III

2 Shortening/Extending.
The adversary can construct m′ from m by dropping blocks
from m. The adversary can construct the corresponding τ ′

from τ by dropping the tags for those blocks in the tag τ .
The adversary can also construct m′ from m by repeating some
blocks of m. The adversary can construct the corresponding τ ′

from τ by repeating the tags for those blocks in the tag τ

MAC Long Messages



First Proposal IV

3 Splicing.
Suppose the adversary sees another message
m̂ = (m̂(1), m̂(2), . . . , m̂(n/B)) and its tag
τ̂ = (τ̂ (1), τ̂ (2), . . . , τ̂(n/B))
The adversary can construct m′ from the messages m and m̂
by splicing blocks. The adversary can construct the
corresponding τ ′ from the tags τ and τ̂ by splicing the
corresponding blocks from the tags τ and τ̂ .
For example, the tag of the message (m(1), m̂(2), . . . , m̂(n/B))

is (τ (1), τ̂ (2), . . . , τ̂(n/B))

MAC Long Messages



First Proposal V

4 Combination of the attacks mentioned above.
For example, the adversary can splice, extend, and permute!

MAC Long Messages



Preventing the Attacks

Students proposed the following fixes.
Prevent Permutation. We can include the information in each
τ (i) that it is the tag of the message-block at position i , then
permutation attacks cannot be performed.
Prevent Shortening/Extension. We can include the information
in each τ (i) that it is the tag of the message of total length n,
then shortening/extension attacks cannot be performed.
Prevent Splicing. We can include a time-stamp in each τ (i) so
that we cannot splice messages at two different time instances.
(We shall use a slightly different technique but I wanted to
summarize the proposals of the students)

MAC Long Messages



Secure MAC Scheme for Arbitrary-length Messages I

Gen(). Return sk = Gen′()

MAC Long Messages



Secure MAC Scheme for Arbitrary-length Messages II

Macsk(m).
1 Pad m to make its length a multiple of B/4
2 Break m into 4n/B blocks of size B/4 each. We represent this

as m = (m(1),m(2), . . . ,m(4n/B))

3 Pick r
$←{0, 1}B/4

4 Let [n]2 represent the (B/4)-bit representation of the number
n in binary

5 Let [i ]2 represent the (B/4)-bit representation of the number i
in binary

6 For each i ∈ {1, 2, . . . , 4n/B} create the following block

m+(i) = (

B/4-bits︷︸︸︷
r ,

B/4-bits︷︸︸︷
[n]2 ,

B/4-bits︷︸︸︷
[i ]2 ,

B/4-bits︷︸︸︷
m(i) )

7 For each i ∈ {1, 2, . . . , 4n/B} create the tag
τ (i) = Mac′sk(m+(i))

8 Return τ = (r , τ (1), τ (2), . . . , τ(4n/B))

MAC Long Messages



Secure MAC Scheme for Arbitrary-length Messages III

Versk(m̃, τ̃).
1 Interpret m̃ = (m̃(1), m̃(2), . . . , m̃(t)), where each block is of

length B
2 Interpret τ̃ = (r̃ , τ̃ (1), τ̃ (2), . . . , τ̃ (t)), where r̃ is of length B/4

and each block τ̃ (i) is of length k
3 Let ñ = t × (B/4), the length of the message m̃
4 For each i ∈ {1, 2, . . . , t} construct the following block

m̃+(i) = (r̃ , [ñ]2, [i ]2, m̃
(i))

5 Accept (m̃, τ̃) if for each i ∈ {1, 2, . . . , t} the test
Ver′sk(m̃+(i), τ̃ (i)) accepts

MAC Long Messages



Notes

Note that we can assume that all random strings “r ” are
unique. Because, by birthday bound, we need to tag roughly√∣∣2B/4

∣∣ = 2B/8 messages before we can expect one collision.
If we choose B = 800, then we will (with high probability) see
unique “r ” strings. This, effectively, serves as a “time stamp”
Check that all the attacks that we discussed cannot be
performed against this new MAC scheme (Gen,Mac,Ver)
Very Important. We emphasize that “protecting against
known attacks” does not imply security of a MAC scheme. We
can formally prove the security of the MAC scheme that we
have described above. The proof is beyond the scope of this
course.

MAC Long Messages


