

Motivation |

@ In the following slides, we will construct a MAC using Random
Functions

@ Understand its properties and its shortcomings

PRF

Motivation |l

Goal.

@ Suppose we have n-bit messages, i.e., the message space is
{0,1}"
e We will generate n/100-bit tags, i.e., the space of tags is

PRF

Motivation |

Scheme.
@ Secret-key Generation Algorithm.
o Let F be a random function from the domain {0,1}" to the
n/100
range {0,1}
o Let the secret key sk be the function table of F
o Both the sender and the verifier will share the secret-key
sk=F
e Tagging Algorithm.
o The tag 7{0, 1}"/100 for a message m{0,1}" using the secret
key sk = F is computed by: 7 = F(m)
o To endorse the message m, the sender will send the pair (m, 7)
o Verification Algorithm.

o The verifier will receive a pair (m, 7)
o The verifier will check whether 7 = F(m), where the secret-key
sk=F

PRF

Motivation IV

Analysis of Adversarial Attack.
@ Suppose the adversary sees a pair (m, T)
@ The adversary does not know the secret-key sk = F, but it
knows that F(m) =7
@ Now, the adversary has to generate a different message
m' € {0,1}" and a tag 7’ such that the pair (m’, 7’) verifies
@ The adversarial pair (m', 7') will verify if an only if F(m') =7/

@ Let us look at this probability

P [F(m') =7'|F(m) = 7]

o Let us parse this mathematical expression. The adversary
already knows the fact that “F(m) = 7." So, we are
conditioning on that fact in the probability expression. And,
conditioned on this fact, we are interested in finding the
probability that F(m’) = 7'.

PRF

Motivation V

o First observation. Given the fact that F(m) = 7 (i.e.,
evaluation of a function at one input) the evaluation of F(m’)
is uniformly random over the range. Because, for a random
function, given the evaluation of a function at one input, the
evaluation of the function F at any other input is uniformly
random over the range.

@ So, conditioned on the knowledge of the adversary that
F(m) = 7, the probability that F(m') = 7/, where m" # m, is
“1 divided by the size of the range.” In our case, that is

1
on/100
@ Therefore, we conclude

1

P [F(m') =7'|F(m) = 7'] = Sn/i00

PRF

Motivation VI

Conclusion.

@ It is highly unlikely that an adversary will be able to forge a
tag given one (m,) pair

PRF

Motivation VII

Extension.
@ In fact, this scheme has an even more interesting property

@ Suppose the sender has sent several message-tag pairs. That
is, the sender has sent (my,71), (m2,72), ..., (m¢, 7¢). Note
that they satisfy the following relation 71 = F(my),

Ty = F(mz), ooy, Tt = F(mt).

@ The adversary has seen all these message-tag pairs. Can the

adversary forge a new message-tag pair? Let us see.

PRF

Motivation VIII

Analysis of the Probability of Forging in the Extension.

@ Let us write down what the adversary has seen. The adversary
knows that

F(ml) = Tl,F(mg) =T2,..., F(mt) = Tt

e Conditioned on this information, we are interested in the
probability that F(m') = 7/, where m’ is different from all the
messages my, My, ..., M;

@ So, we are interested in the probability

P [F(m') = T”F(ml) =T1, F(m2) = 7'2,...,F(mt) = Tt]

PRF

Motivation IX

@ Main Observation. Even if we know the evaluation of the
function F at inputs my, mo, ..., m;, the evaluation of F at a
new input m’ is uniformly random over the range. So, we can
conclude that the probability of forging is

1
P[F(m') =7'|F(m)=m,F(m) =72,...,F(m) = 7¢| = 2n/100

PRF

Motivation X

Conclusion.

@ The MAC using random function to generate tags is secure
even when the adversary see t message-tag pairs (for any value
of t less than the size of the range, i.e., t < 2")

PRF

Features of MAC using Random Function |

Positive Features.

@ Even if the adversary has unbounded computational power, the
probability arguments bounding its probability to forge still
holds

@ Recall that if we use 2-wise independent hash functions or
universal hash functions instead of the random function, our
MAC is secure only when t = 1. This new scheme is secure
even for larger values of t

@ Recall that, in general, if we used k-wise independent hash
functions instead of the random function, our MAC is secure
only when t < (k — 1). This new scheme is secure even for
large values of t

PRF

Features of MAC using Random Function ||

Primary Shortcoming.

o Let us compute the size of the function-table for the function
F. Recall that F is from the domain {0,1}" to the range
2n
{0,111 5o there are a total of (2”/100) = 2(n/100)2"
different functions. This implies that we need (n/100)2"
(exponential in n) bits to represent this function! Even for

n = 512, this number is larger than the number of atoms
(< 2%273) in the entire universe.

PRF

What Next?

To fix the shortcoming mentioned above, we set forth the following
goals for ourselves

@ We will construct functions that use smaller key, i.e., length is
polynomial in n

However, our security will hold only for computationally bounded
adversaries (instead of adversaries with unbounded computational
power)

PRF

Pseudo-random Functions: The GGM Construction |

@ Solution: We replace “random functions” with “pseudo-random
functions” (PRF) (i.e., functions that “look” like random
functions for computationally bounded adversaries)

PRF

Pseudo-random Functions: The GGM Construction I

Notation.

@ We will construct pseudorandom functions from the domain
{0,1}" to the range {0,1}*

o A length-doubling PRG G: {0,1}* — {0,1}?*. We will
pictorially represent as follows

Input Seed

First Half, econd Half
of Output of Qutput

PRF

Pseudo-random Functions: The GGM Construction ||

The “GGM" stands for Goldreich-Goldwasser-Micali (the name of
the founders)

PRF

Pseudo-random Functions: The GGM Construction |V

@ Let us understand the function evaluation with an example

@ Let n =4 and the input be x = xyxox3x4 = 0100 For
sk € {0,1}*, the evaluation of the function Fy(x) is defined
to be z computed as follows (see the next slide for the figure)

PRF

Pseudo-random Functions: The GGM Construction V

PRF

Pseudo-random Functions: The GGM Construction VI

Comments.

o For each value of sk € {0,1}*, we have a function Fy. Instead
of storing the entire function table of F, we can now only
store the sk (a k-bit long string). To compute Fg(x), we
compute the function on the fly, as described in the previous
slide.

@ If the input x is n-bit long, then the tree is evaluates till depth
n

@ Think: How to make a dedicated hardware to implement the
GGM construction

PRF

MAC using Pseudorandom Functions |

Scheme.

@ Secret-key Generation. Sample sk uniformly at random from
{0,1}"/*% and provide sk to both the sender and the verifier

e Tagging a message m € {0,1}". The sender computes tag
T = Fg(m) (evaluate using the GGM construction)

@ Verifying a message-tag pair (m, 7). Check whether 7 is same
as Fg(m) or not

PRF

MAC using Pseudorandom Functions |l

Security

@ An adversary cannot forge if it sees t message-tag pairs, where
t = poly(n) and the adversary is computationally bounded

PRF

Subtlety |

The scheme mentioned above is secure ONLY for messages
in {0,1}" and NOT {0,1}"
What does it mean?

@ The set {0,1}" represents n-bit messages, and {0,1}"
represents arbitrary-length messages. This scheme is secure
only when an adversary see message-tag pairs for messages
my, my, ..., m; such that all of them have identical length n.
Moreover, the adversary has to forge by producing (m’, 7’) pair
such that the length of the message m’ is exactly n.

@ The scheme is not secure if the adversary can produce a
message of a different length. The attack is explained in the
next slide

PRF

Subtlety I

Adversarial strategy to forge a message-tag pair of different
length.

@ Suppose the adversary has seen a message-tag pair (m, 7)
such that 7 = Fg(m)

@ The adversary creates m" = m0 (i.e., the message m
concatenated at the end with 0). The adversary computes 7/

as the first half of G(7).
e Verify that Fgy(m') =7/

@ In fact, the adversary can successfully tag any m’ such that m
is the prefix of m’

PRF

Lesson Learned (Very Important)

@ The sender and the verifier should establish one secret-key sk
for EACH length of the message that they want to sign. For
example

o They establish a secret-key sk € {0, l}k for 1024-bit messages
and use Fg(m) as the tag for 1024-bit messages m

o If they want to tag 2048-bit messages, then they establish a
new secret-key sk’ € {0,1}* and use Fy (m) as the tag for
2048-bit messages m

o The verifier should only check the validity of the tags
corresponding to 2048-bit messages using the secret-key
associated with message-length 2048 (in our case, it is the
secret-key sk')

PRF

