
Lecture 23: Pseudo-random Functions
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Motivation I

In the following slides, we will construct a MAC using Random
Functions

Understand its properties and its shortcomings
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Motivation II

Goal.

Suppose we have n-bit messages, i.e., the message space is
{0, 1}n

We will generate n/100-bit tags, i.e., the space of tags is
{0, 1}n/100
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Motivation III

Scheme.
Secret-key Generation Algorithm.

Let F be a random function from the domain {0, 1}n to the
range {0, 1}n/100

Let the secret key sk be the function table of F
Both the sender and the verifier will share the secret-key
sk = F

Tagging Algorithm.
The tag τ{0, 1}n/100 for a message m{0, 1}n using the secret
key sk = F is computed by: τ = F (m)
To endorse the message m, the sender will send the pair (m, τ)

Verification Algorithm.
The verifier will receive a pair (m̃, τ̃)
The verifier will check whether τ̃ = F (m̃), where the secret-key
sk = F
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Motivation IV

Analysis of Adversarial Attack.
Suppose the adversary sees a pair (m, τ)
The adversary does not know the secret-key sk = F , but it
knows that F (m) = τ

Now, the adversary has to generate a different message
m′ ∈ {0, 1}n and a tag τ ′ such that the pair (m′, τ ′) verifies
The adversarial pair (m′, τ ′) will verify if an only if F (m′) = τ ′

Let us look at this probability

P
[
F (m′) = τ ′|F (m) = τ

]
Let us parse this mathematical expression. The adversary
already knows the fact that “F (m) = τ .” So, we are
conditioning on that fact in the probability expression. And,
conditioned on this fact, we are interested in finding the
probability that F (m′) = τ ′.

PRF



Motivation V

First observation. Given the fact that F (m) = τ (i.e.,
evaluation of a function at one input) the evaluation of F (m′)
is uniformly random over the range. Because, for a random
function, given the evaluation of a function at one input, the
evaluation of the function F at any other input is uniformly
random over the range.
So, conditioned on the knowledge of the adversary that
F (m) = τ , the probability that F (m′) = τ ′, where m′ 6= m, is
“1 divided by the size of the range.” In our case, that is

1
2n/100

Therefore, we conclude

P
[
F (m′) = τ ′|F (m) = τ

]
=

1
2n/100
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Motivation VI

Conclusion.

It is highly unlikely that an adversary will be able to forge a
tag given one (m, τ) pair
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Motivation VII

Extension.

In fact, this scheme has an even more interesting property

Suppose the sender has sent several message-tag pairs. That
is, the sender has sent (m1, τ1), (m2, τ2), . . . , (mt , τt). Note
that they satisfy the following relation τ1 = F (m1),
τ2 = F (m2), . . . , τt = F (mt).

The adversary has seen all these message-tag pairs. Can the
adversary forge a new message-tag pair? Let us see.
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Motivation VIII

Analysis of the Probability of Forging in the Extension.

Let us write down what the adversary has seen. The adversary
knows that

F (m1) = τ1,F (m2) = τ2, . . . ,F (mt) = τt

Conditioned on this information, we are interested in the
probability that F (m′) = τ ′, where m′ is different from all the
messages m1,m2, . . . ,mt

So, we are interested in the probability

P
[
F (m′) = τ ′|F (m1) = τ1,F (m2) = τ2, . . . ,F (mt) = τt

]
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Motivation IX

Main Observation. Even if we know the evaluation of the
function F at inputs m1, m2, . . . , mt , the evaluation of F at a
new input m′ is uniformly random over the range. So, we can
conclude that the probability of forging is

P
[
F (m′) = τ ′|F (m1) = τ1,F (m2) = τ2, . . . ,F (mt) = τt

]
=

1
2n/100
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Motivation X

Conclusion.

The MAC using random function to generate tags is secure
even when the adversary see t message-tag pairs (for any value
of t less than the size of the range, i.e., t < 2n)
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Features of MAC using Random Function I

Positive Features.
Even if the adversary has unbounded computational power, the
probability arguments bounding its probability to forge still
holds

Recall that if we use 2-wise independent hash functions or
universal hash functions instead of the random function, our
MAC is secure only when t = 1. This new scheme is secure
even for larger values of t

Recall that, in general, if we used k-wise independent hash
functions instead of the random function, our MAC is secure
only when t 6 (k − 1). This new scheme is secure even for
large values of t
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Features of MAC using Random Function II

Primary Shortcoming.

Let us compute the size of the function-table for the function
F . Recall that F is from the domain {0, 1}n to the range

{0, 1}n/100. So, there are a total of
(
2n/100

)2n
= 2(n/100)2n

different functions. This implies that we need (n/100)2n

(exponential in n) bits to represent this function! Even for
n = 512, this number is larger than the number of atoms
(< 2273) in the entire universe.
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What Next?

To fix the shortcoming mentioned above, we set forth the following
goals for ourselves

We will construct functions that use smaller key, i.e., length is
polynomial in n

However, our security will hold only for computationally bounded
adversaries (instead of adversaries with unbounded computational
power)
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Pseudo-random Functions: The GGM Construction I

Solution: We replace “random functions” with “pseudo-random
functions” (PRF) (i.e., functions that “look” like random
functions for computationally bounded adversaries)
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Pseudo-random Functions: The GGM Construction II

Notation.

We will construct pseudorandom functions from the domain
{0, 1}n to the range {0, 1}k

A length-doubling PRG G : {0, 1}k → {0, 1}2k . We will
pictorially represent as follows

G

Input Seed

First Half
of Output

Second Half
of Output
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Pseudo-random Functions: The GGM Construction III

The “GGM” stands for Goldreich-Goldwasser-Micali (the name of
the founders)

PRF



Pseudo-random Functions: The GGM Construction IV

Let us understand the function evaluation with an example

Let n = 4 and the input be x = x1x2x3x4 = 0100 For
sk ∈ {0, 1}k , the evaluation of the function Fsk(x) is defined
to be z computed as follows (see the next slide for the figure)
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Pseudo-random Functions: The GGM Construction V

sk

G

Go Left because x1 = 0

G
Go Right because x2 = 1

G

Go Left because x3 = 0

G

Go Left because x4 = 0

z
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Pseudo-random Functions: The GGM Construction VI

Comments.

For each value of sk ∈ {0, 1}k , we have a function Fsk. Instead
of storing the entire function table of Fsk, we can now only
store the sk (a k-bit long string). To compute Fsk(x), we
compute the function on the fly, as described in the previous
slide.

If the input x is n-bit long, then the tree is evaluates till depth
n

Think: How to make a dedicated hardware to implement the
GGM construction
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MAC using Pseudorandom Functions I

Scheme.

Secret-key Generation. Sample sk uniformly at random from
{0, 1}n/100 and provide sk to both the sender and the verifier

Tagging a message m ∈ {0, 1}n. The sender computes tag
τ = Fsk(m) (evaluate using the GGM construction)

Verifying a message-tag pair (m̃, τ̃). Check whether τ̃ is same
as Fsk(m̃) or not
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MAC using Pseudorandom Functions II

Security

An adversary cannot forge if it sees t message-tag pairs, where
t = poly(n) and the adversary is computationally bounded
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Subtlety I

The scheme mentioned above is secure ONLY for messages
in {0, 1}n and NOT {0, 1}∗
What does it mean?

The set {0, 1}n represents n-bit messages, and {0, 1}∗
represents arbitrary-length messages. This scheme is secure
only when an adversary see message-tag pairs for messages
m1,m2, . . . ,mt such that all of them have identical length n.
Moreover, the adversary has to forge by producing (m′, τ ′) pair
such that the length of the message m′ is exactly n.

The scheme is not secure if the adversary can produce a
message of a different length. The attack is explained in the
next slide
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Subtlety II

Adversarial strategy to forge a message-tag pair of different
length.

Suppose the adversary has seen a message-tag pair (m, τ)
such that τ = Fsk(m)

The adversary creates m′ = m0 (i.e., the message m
concatenated at the end with 0). The adversary computes τ ′

as the first half of G (τ).

Verify that Fsk(m
′) = τ ′

In fact, the adversary can successfully tag any m′ such that m
is the prefix of m′
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Lesson Learned (Very Important)

The sender and the verifier should establish one secret-key sk
for EACH length of the message that they want to sign. For
example

They establish a secret-key sk ∈ {0, 1}k for 1024-bit messages
and use Fsk(m) as the tag for 1024-bit messages m
If they want to tag 2048-bit messages, then they establish a
new secret-key sk′ ∈ {0, 1}k and use Fsk′(m) as the tag for
2048-bit messages m
The verifier should only check the validity of the tags
corresponding to 2048-bit messages using the secret-key
associated with message-length 2048 (in our case, it is the
secret-key sk′)
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