
Lecture 21: Private-key Encryption of Long
Messages

Encrypting Long Messages



Recall: One-time Pad

One-time Pad was the most efficient technique to encrypt
messages (Refer to Lecture 09). Any private-key encryption
scheme must have secret-key that is as long as the secret-key
of the one-time pad
It is secure even against adversaries with unbounded
computation power
However, we need to know the length of the message that
Alice wants to send to Bob. The length of the secret-key is as
long as the length of the message

Encrypting Long Messages



Recall: One-time Pad for n-bit Messages

Yesterday, Alice and Bob met to generate sk $←{0, 1}n

Today Alice encrypts a message m ∈ {0, 1}n by computing the
cipher-text c = m ⊕ sk
Bob can decrypt the cipher text c by computing m̃ = c ⊕ sk

Encrypting Long Messages



Recall: OWP → PRG Construction

Last lecture we saw that if f is a one-way permutation
Then, using the Goldreich-Levin Hardcore Predicate, we can
construct a one-bit extension pseudo-random generator
Gn,n+1, where n is even, using the following construction

Gn,n+1(r , x) =
(
r , f (x), 〈r , x〉

)
,

where r , x ∈ {0, 1}n/2

Given a one-bit extension PRG, we can construct arbitrary
stretch pseudo-random generate Gn,` : {0, 1}n → {0, 1}`

Encrypting Long Messages



Goal

Suppose Alice and Bob met yesterday to establish an n-bit
secret-key
Today we want Alice to encrypt an `-bit message, where ` is
much larger than n (say, ` = n2)

Encrypting Long Messages



Intuition

Instead of using a random sk in the one-time encryption we
shall use a pseudorandom sk (produced from a small seed)
Gain: We shall encrypt messages that are much larger than
the length of the seed
Loss: The encryption is secure only against
computationally bounded adversaries

Encrypting Long Messages



Private-key Encryption Scheme

Gen(): Return sk $←{0, 1}n (the seed for the PRG)
Encsk(m): Return c = m ⊕ Gn,`(sk), where ` is the length of
the message m and Gn,`(m) is a PRG
Decsk(c): Return m̃ = c ⊕ Gn,`(sk)

Intuition:
Instead of the mask being a random `-bit string, we use the
pseudo-random mask Gn,`(sk)
Note that ` can be deduced by Bob from the length of the
cipher-text, so he can compute Gn,`

The scheme is secure for arbitrarily ` that is polynomial in n
(i.e., ` need not be known while choosing the secret key)
A larger polynomial ` reduces the security of the scheme

Encrypting Long Messages



Food for Thought

How can Alice encrypt and send a second message m′ of
length `′ tomorrow? What does Alice need to remember from
today to successfully perform this encryption tomorrow?

Encrypting Long Messages


