


Recall: One-time Pad

@ One-time Pad was the most efficient technique to encrypt
messages (Refer to Lecture 09). Any private-key encryption
scheme must have secret-key that is as long as the secret-key
of the one-time pad

@ It is secure even against adversaries with unbounded
computation power

@ However, we need to know the length of the message that
Alice wants to send to Bob. The length of the secret-key is as
long as the length of the message

Encrypting Long Messages



Recall: One-time Pad for n-bit Messages

o Yesterday, Alice and Bob met to generate sk < {0,1}"

@ Today Alice encrypts a message m € {0,1}" by computing the
cipher-text c = m @ sk
@ Bob can decrypt the cipher text ¢ by computing m = ¢ & sk

Encrypting Long Messages



Recall: OWP — PRG Construction

o Last lecture we saw that if f is a one-way permutation

@ Then, using the Goldreich-Levin Hardcore Predicate, we can
construct a one-bit extension pseudo-random generator
Gn,nt1, Where n is even, using the following construction

Gpnt1(r,x) = (r, f(x), (r,x)) ,

where r,x € {0,1}"/?
@ Given a one-bit extension PRG, we can construct arbitrary
stretch pseudo-random generate G, ,: {0,1}" — {0, 1}

Encrypting Long Messages



Goal

@ Suppose Alice and Bob met yesterday to establish an n-bit
secret-key

o Today we want Alice to encrypt an {-bit message, where £ is
much larger than n (say, £ = n?)

Encrypting Long Messages



[ntuition

@ Instead of using a random sk in the one-time encryption we
shall use a pseudorandom sk (produced from a small seed)

@ Gain: We shall encrypt messages that are much larger than
the length of the seed

@ Loss: The encryption is secure only against
computationally bounded adversaries

Encrypting Long Messages



Private-key Encryption Scheme

o Gen(): Return sk < {0,1}" (the seed for the PRG)

o Encg(m): Return ¢ = m @ Gy ¢(sk), where £ is the length of
the message m and G, ¢(m) is a PRG

@ Decg(c): Return m = c @ G, ¢(sk)

Intuition:

@ Instead of the mask being a random /-bit string, we use the
pseudo-random mask G, ¢(sk)

@ Note that £ can be deduced by Bob from the length of the
cipher-text, so he can compute G, ¢

@ The scheme is secure for arbitrarily £ that is polynomial in n
(i.e., ¢ need not be known while choosing the secret key)

@ A larger polynomial ¢ reduces the security of the scheme

Encrypting Long Messages



Food for Thought

@ How can Alice encrypt and send a second message m’ of
length ¢/ tomorrow? What does Alice need to remember from
today to successfully perform this encryption tomorrow?

Encrypting Long Messages



