Lecture 21: Private-key Encryption of Long Messages

・ロト ・四ト ・ヨト ・ヨト

э

- One-time Pad was the most efficient technique to encrypt messages (Refer to Lecture 09). Any private-key encryption scheme must have secret-key that is as long as the secret-key of the one-time pad
- It is secure even against adversaries with unbounded computation power
- However, we need to know the length of the message that Alice wants to send to Bob. The length of the secret-key is as long as the length of the message

・ロッ ・雪ヶ ・ヨケー

- Yesterday, Alice and Bob met to generate sk $\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \{0,1\}^n$
- Today Alice encrypts a message m ∈ {0,1}ⁿ by computing the cipher-text c = m ⊕ sk
- Bob can decrypt the cipher text c by computing $\widetilde{m} = c \oplus \mathsf{sk}$

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Last lecture we saw that if f is a one-way permutation
- Then, using the Goldreich-Levin Hardcore Predicate, we can construct a one-bit extension pseudo-random generator *G*_{*n*,*n*+1}, where *n* is even, using the following construction

$$G_{n,n+1}(r,x) = (r, f(x), \langle r, x \rangle),$$

where $r, x \in \{0, 1\}^{n/2}$

• Given a one-bit extension PRG, we can construct arbitrary stretch pseudo-random generate $G_{n,\ell}$: $\{0,1\}^n \to \{0,1\}^\ell$

- Suppose Alice and Bob met yesterday to establish an *n*-bit secret-key
- Today we want Alice to encrypt an ℓ -bit message, where ℓ is much larger than n (say, $\ell = n^2$)

イロト イポト イヨト イヨト

- Instead of using a random sk in the one-time encryption we shall use a pseudorandom sk (produced from a small seed)
- Gain: We shall encrypt messages that are much larger than the length of the seed
- Loss: The encryption is secure only against computationally bounded adversaries

< ロ > < 同 > < 回 > < 回 > < 回 > <

Private-key Encryption Scheme

- Gen(): Return sk $\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \{0,1\}^n$ (the seed for the PRG)
- Enc_{sk}(*m*): Return $c = m \oplus G_{n,\ell}(sk)$, where ℓ is the length of the message *m* and $G_{n,\ell}(m)$ is a PRG
- $\operatorname{Dec}_{\mathsf{sk}}(c)$: Return $\widetilde{m} = c \oplus G_{n,\ell}(\mathsf{sk})$

Intuition:

- Instead of the mask being a random ℓ -bit string, we use the pseudo-random mask $G_{n,\ell}(sk)$
- Note that ℓ can be deduced by Bob from the length of the cipher-text, so he can compute $G_{n,\ell}$
- The scheme is secure for arbitrarily l that is polynomial in n (i.e., l need not be known while choosing the secret key)
- $\bullet\,$ A larger polynomial ℓ reduces the security of the scheme

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

• How can Alice encrypt and send a second message m' of length ℓ' tomorrow? What does Alice need to remember from today to successfully perform this encryption tomorrow?