Lecture 19: Candidate One-way Functions

Recall: OWF

Intuition: OWF

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a one-way function if
(1) The function f is easy to evaluate, and
(2) The function f is difficult is hard to invert

- We believe certain functions are one-way functions
- If $P=N P$ then one-way functions cannot exist (see appendix). So, proving that a particular function f is a one-way function will demonstrate that $P \neq N P$, which we believe is a very difficult problem to resolve
- So, based on our current knowledge in mathematics, we have invested faith in believing that a few specially designed functions are one-way functions

First Candidate: Discrete Log is Hard

- Let (G, \times) be a group and g be a generator. That is, $G=\left\{g^{0}, g^{1}, g^{2}, \ldots, g^{K-1}\right\}$
- Let $f:\{0, \ldots, K-1\} \rightarrow G$ be defined as follows

$$
f(x)=g^{x}
$$

- Think: Why is this function efficient to evaluate?
- It is believed that there exists group G where f is hard to invert
- Clarification: We are not saying that f is hard to invert in any group G. There are special groups G where f is believed to be hard to invert
- Note that the inversion problem asks you to find the "logarithm," given y find x such that $g^{x}=y$. This is known as the discrete logarithm problem

Second Candidate: Finding Square-root is Hard

- Let p and q be n-bit prime numbers
- Let $N=p q$
- Rabin's function is defined as follows

$$
f(x)=x^{2} \quad \bmod N
$$

- Think: Why is this function efficient to evaluate?
- It is believed that finding square-roots $\bmod N$ is hard when N is the product of two large primes
- Think: How can you invert Rabin's function if you know the factorization of N. That is, given p and q, how can you efficiently compute x^{\prime} such that $\left(x^{\prime}\right)^{2} \bmod N=y$, where $y=x^{2} \bmod N$
- Let \mathcal{P}_{n} be the set of prime numbers that require n-bit for their binary representation (i.e., the primes in the range $\left\{2^{n-1}, \ldots, 2^{n}-1\right\}$). For example, $\mathcal{P}_{4}=\{11,13\}$
- Consider the function $f: \mathcal{P}_{n} \times \mathcal{P}_{n} \rightarrow \mathbb{N}$

$$
f(x, y)=x y
$$

- Think: Why is this function efficient to compute?
- Assuming that the factorization of product of large prime numbers is difficult, this function is hard to invert

Fourth Candidate: Elliptic Curves

- Elliptic curves are sets of pairs of elements x, y in a field that satisfy the equation $y=x^{3}+a x+b$, for some suitably chosen values of a, b
- There is a definition of "point addition" over an elliptic curve, i.e., given two points P and Q on the curve, we can suitably define a point $P+Q$ on the curve
- Given a point P on the elliptic curve, we can add x-times
$\overbrace{P+P+\cdots+P}$ and represent the resulting point as $x P$
- Then the following function is believed to be one-way for suitable elliptic curves

$$
f(x, P)=(P, x P)
$$

- Think: Can you connect this assumption to the discrete log problem?

One-way Permutations

Definition

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a one-way permutation if it is a one-way function and the function f is a bijection

We introduce this primitive because the construction of pseudorandom generators from one-way permutations is significantly more intuitive than the construction of pseudorandom generators from OWF

Appendix: Efficient Inversion of Efficiently Computable Functions I

We shall show the following result

Theorem

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a function that can be efficiently computed. If $\mathrm{P}=\mathrm{NP}$ then there exists an efficient algorithm to find an inverse x^{\prime} of y, where $y=f(x)$ for some $x \in\{0,1\}^{n}$

Appendix: Efficient Inversion of Efficiently Computable Functions II

Before we begin the proof of the theorem, let me emphasize that there is always an inefficient algorithm to find x^{\prime}, an inverse of y

Invert-Ineffcient (y):
(1) For $x^{\prime} \in\{0,1\}^{n}$: If $f\left(x^{\prime}\right)==y$, then return x^{\prime}
(2) Return -1

This is an inefficient algorithm to compute an inverse of $y=f(x)$

Appendix: Efficient Inversion of Efficiently Computable

Functions III

Let us prove the theorem now. First, let us introduce a few notations.

- Recall $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is the function
- Let $\varphi(x)$ be a 3-SAT formula that tests whether $f(x)=y$ or not. That is, $\varphi(x)$ evaluates to true if and only if $f(x)=y$.
- If f can be evaluated in polynomial time, then the size of $\varphi(x)$ is polynomial in n
- If $\mathrm{P}=\mathrm{NP}$ then we can efficiently determine: Is $\varphi(x)$ satisfiable or not

Appendix: Efficient Inversion of Efficiently Computable

Functions IV

Let us introduce the notion of a partial assignment of variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$

- Consider the following example.

$$
\varphi(x)=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)
$$

- The formula " $\varphi(x)$ under the restriction $x_{i} \mapsto b$," is obtained by substituting b as the value of x_{i} in the formula $\varphi(x)$ and simplifying. For example, " $\varphi(x)$ under the restriction $x_{1} \mapsto 0$ " is the following formula

$$
\begin{aligned}
\left.\varphi(x)\right|_{x_{1} \mapsto 0} & =\left(0 \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg 0 \vee x_{2} \vee x_{3}\right) \\
& =\left(0 \vee x_{2} \vee \neg x_{3}\right) \wedge\left(1 \vee x_{2} \vee x_{3}\right) \\
& =\left(x_{2} \vee \neg x_{3}\right)
\end{aligned}
$$

Appendix: Efficient Inversion of Efficiently Computable

 Functions V- Given a set of partial assignments assign $=\left\{x_{i_{1}} \mapsto b_{1}, x_{i_{2}} \mapsto b_{2}, \ldots, x_{i_{k}} \mapsto b_{k}\right\}$, we define $\left.\varphi(x)\right|_{\text {assign }}$ by setting the values of $x_{i_{1}}, \ldots, x_{i_{k}}$ as b_{1}, \ldots, b_{k} in $\varphi(x)$ and simplifying
- Again, if $\mathrm{P}=\mathrm{NP}$ and f is efficiently computable, then it is efficient to find whether $\left.\varphi(x)\right|_{\text {assign }}$ is satisfiable or not

Appendix: Efficient Inversion of Efficiently Computable Functions VI

Now consider the following algorithm. We will construct a solution $x_{1} x_{2} \ldots x_{n}$ such that $f\left(x_{1} x_{2} \ldots x_{n}\right)=y$ one bit at a time.

Find_Inverse(y):
(1) Let $\varphi(x)$ be the 3-SAT formula mentioned above
(2) If $\varphi(x)$ is not satisfiable, then return -1
(3) assign $=\emptyset$
(c) For $i=1$ to n :
(1) result $=$ Test whether " $\left.\varphi(x)\right|_{\text {assign } \cup\left\{x_{i} \mapsto 0\right\}}$ " is satisfiable or not
(2) If result $==$ true: assign $=$ assign $\cup\left\{x_{i} \mapsto 0\right\}$
(3) Else: assign $=$ assign $\cup\left\{x_{i} \mapsto 1\right\}$
(3) Return assign

Note that this is an efficient algorithm to compute an inverse of y if f can be computed efficiently and $\mathrm{P}=\mathrm{NP}$

Appendix: Defining Addition on Elliptic Curves

- Consider the field ($\mathbb{R},+, \times$)
- Let us consider the plot of the curve $y^{2}=x^{3}+a x+b$ (in this example, we have $a=-2$ and $b=4$)
- Given two points P and Q on the curve, draw the line through them and find R^{\prime}, the third intersection point of the line with the curve
- Reflect R^{\prime} on the X-axis to obtain the point R
- We define the point R as the sum $P+Q$

Candidate OWF

