Lecture 19: Candidate One-way Functions
Recall: OWF

Intuition: OWF

A function $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$ is a one-way function if

1. The function f is easy to evaluate, and
2. The function f is difficult to invert

- We believe certain functions are one-way functions
- If $P = NP$ then one-way functions cannot exist (see appendix). So, proving that a particular function f is a one-way function will demonstrate that $P \neq NP$, which we believe is a very difficult problem to resolve
- So, based on our current knowledge in mathematics, we have invested faith in believing that a few specially designed functions are one-way functions
Let (G, \times) be a group and g be a generator. That is,
$G = \{g^0, g^1, g^2, \ldots, g^{K-1}\}$

Let $f: \{0, \ldots, K - 1\} \rightarrow G$ be defined as follows

$$f(x) = g^x$$

Think: Why is this function efficient to evaluate?

It is believed that there exists group G where f is hard to invert

Clarification: We are not saying that f is hard to invert in any group G. There are special groups G where f is believed to be hard to invert

Note that the inversion problem asks you to find the “logarithm,” given y find x such that $g^x = y$. This is known as the discrete logarithm problem
Let \(p \) and \(q \) be \(n \)-bit prime numbers

Let \(N = pq \)

Rabin’s function is defined as follows

\[
f(x) = x^2 \mod N
\]

Think: Why is this function efficient to evaluate?

It is believed that finding square-roots mod \(N \) is hard when \(N \) is the product of two large primes

Think: How can you invert Rabin’s function if you know the factorization of \(N \). That is, given \(p \) and \(q \), how can you efficiently compute \(x' \) such that \((x')^2 \mod N = y\), where \(y = x^2 \mod N \)
Let \mathcal{P}_n be the set of prime numbers that require n-bit for their binary representation (i.e., the primes in the range $\{2^{n-1}, \ldots, 2^n - 1\}$). For example, $\mathcal{P}_4 = \{11, 13\}$.

Consider the function $f: \mathcal{P}_n \times \mathcal{P}_n \rightarrow \mathbb{N}$

$$f(x, y) = xy$$

Think: Why is this function efficient to compute?

Assuming that the factorization of product of large prime numbers is difficult, this function is hard to invert.
Elliptic curves are sets of pairs of elements \(x, y \) in a field that satisfy the equation \(y = x^3 + ax + b \), for some suitably chosen values of \(a, b \).

There is a definition of “point addition” over an elliptic curve, i.e., given two points \(P \) and \(Q \) on the curve, we can suitably define a point \(P + Q \) on the curve.

Given a point \(P \) on the elliptic curve, we can add \(P + P + \cdots + P \) \(x \)-times and represent the resulting point as \(xP \).

Then the following function is believed to be one-way for suitable elliptic curves:

\[
f(x, P) = (P, xP)
\]

Think: Can you connect this assumption to the discrete log problem?
One-way Permutations

Definition

A function $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$ is a one-way permutation if it is a one-way function and the function f is a bijection.

We introduce this primitive because the construction of pseudorandom generators from one-way permutations is significantly more intuitive than the construction of pseudorandom generators from OWF.
We shall show the following result

Theorem

Let $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$ be a function that can be efficiently computed. If $P = NP$ then there exists an efficient algorithm to find an inverse x' of y, where $y = f(x)$ for some $x \in \{0, 1\}^n$.
Before we begin the proof of the theorem, let me emphasize that there is always an inefficient algorithm to find x', an inverse of y.

Invert-Inefficient (y):

1. For $x' \in \{0, 1\}^n$: If $f(x') = y$, then return x'
2. Return -1

This is an inefficient algorithm to compute an inverse of $y = f(x)$
Let us prove the theorem now. First, let us introduce a few notations.

- Recall $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$ is the function.
- Let $\varphi(x)$ be a 3-SAT formula that tests whether $f(x) = y$ or not. That is, $\varphi(x)$ evaluates to true if and only if $f(x) = y$.
- If f can be evaluated in polynomial time, then the size of $\varphi(x)$ is polynomial in n.
- If $P = NP$ then we can efficiently determine: Is $\varphi(x)$ satisfiable or not.
Let us introduce the notion of a partial assignment of variables \(\{x_1, x_2, \ldots, x_n\} \)

- Consider the following example.

\[
\varphi(x) = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3)
\]

- The formula “\(\varphi(x) \) under the restriction \(x_i \mapsto b \),” is obtained by substituting \(b \) as the value of \(x_i \) in the formula \(\varphi(x) \) and simplifying. For example, “\(\varphi(x) \) under the restriction \(x_1 \mapsto 0 \)” is the following formula

\[
\varphi(x)|_{x_1\to 0} = (0 \lor x_2 \lor \neg x_3) \land (\neg 0 \lor x_2 \lor x_3) \\
= (0 \lor x_2 \lor \neg x_3) \land (1 \lor x_2 \lor x_3) \\
= (x_2 \lor \neg x_3)
\]
Given a set of partial assignments
assign = \{x_{i_1} \mapsto b_1, x_{i_2} \mapsto b_2, \ldots, x_{i_k} \mapsto b_k\}, we define
\varphi(x)|_{assign} by setting the values of x_{i_1}, \ldots, x_{i_k} as b_1, \ldots, b_k in
\varphi(x) and simplifying

Again, if P = NP and f is efficiently computable, then it is efficient to find whether \varphi(x)|_{assign} is satisfiable or not
Appendix: Efficient Inversion of Efficiently Computable Functions VI

Now consider the following algorithm. We will construct a solution \(x_1x_2\ldots x_n \) such that \(f(x_1x_2\ldots x_n) = y \) one bit at a time.

\[
\text{Find}_\text{Inverse}(y):
\]

1. Let \(\varphi(x) \) be the 3-SAT formula mentioned above
2. If \(\varphi(x) \) is not satisfiable, then return -1
3. assign = Ø
4. For \(i = 1 \) to \(n \):
 1. result = Test whether “\(\varphi(x)|_{assign \cup \{x_i \mapsto 0\}} \)” is satisfiable or not
 2. If result == true: assign = assign \(\cup \) \(\{x_i \mapsto 0\} \)
 3. Else: assign = assign \(\cup \) \(\{x_i \mapsto 1\} \)
5. Return assign

Note that this is an efficient algorithm to compute an inverse of \(y \) if \(f \) can be computed efficiently and \(P = \text{NP} \)
Appendix: Defining Addition on Elliptic Curves

Consider the field \((\mathbb{R}, +, \times)\).

Let us consider the plot of the curve \(y^2 = x^3 + ax + b\) (in this example, we have \(a = -2\) and \(b = 4\)).

Given two points \(P\) and \(Q\) on the curve, draw the line through them and find \(R'\), the third intersection point of the line with the curve.

Reflect \(R'\) on the \(X\)-axis to obtain the point \(R\).

We define the point \(R\) as the sum \(P + Q\).