
Lecture 19: Candidate One-way Functions

Candidate OWF



Recall: OWF

Intuition: OWF
A function f : {0, 1}n → {0, 1}n is a one-way function if

1 The function f is easy to evaluate, and
2 The function f is difficult is hard to invert

We believe certain functions are one-way functions
If P = NP then one-way functions cannot exist (see appendix).
So, proving that a particular function f is a one-way function
will demonstrate that P 6= NP, which we believe is a very
difficult problem to resolve
So, based on our current knowledge in mathematics, we have
invested faith in believing that a few specially designed
functions are one-way functions

Candidate OWF



First Candidate: Discrete Log is Hard

Let (G ,×) be a group and g be a generator. That is,
G = {g0, g1, g2, . . . , gK−1}
Let f : {0, . . . ,K − 1} → G be defined as follows

f (x) = g x

Think: Why is this function efficient to evaluate?
It is believed that there exists group G where f is hard to
invert
Clarification: We are not saying that f is hard to invert in any
group G . There are special groups G where f is believed to be
hard to invert
Note that the inversion problem asks you to find the
“logarithm,” given y find x such that g x = y . This is known as
the discrete logarithm problem

Candidate OWF



Second Candidate: Finding Square-root is Hard

Let p and q be n-bit prime numbers
Let N = pq

Rabin’s function is defined as follows

f (x) = x2 mod N

Think: Why is this function efficient to evaluate?
It is believed that finding square-roots mod N is hard when N
is the product of two large primes
Think: How can you invert Rabin’s function if you know the
factorization of N. That is, given p and q, how can you
efficiently compute x ′ such that (x ′)2 mod N = y , where
y = x2 mod N

Candidate OWF



Third Candidate: Factorization is Hard

Let Pn be the set of prime numbers that require n-bit for their
binary representation (i.e., the primes in the range
{2n−1, . . . , 2n − 1}). For example, P4 = {11, 13}
Consider the function f : Pn × Pn → N

f (x , y) = xy

Think: Why is this function efficient to compute?
Assuming that the factorization of product of large prime
numbers is difficult, this function is hard to invert

Candidate OWF



Fourth Candidate: Elliptic Curves

Elliptic curves are sets of pairs of elements x , y in a field that
satisfy the equation y = x3 + ax + b, for some suitably chosen
values of a, b
There is a definition of “point addition” over an elliptic curve,
i.e., given two points P and Q on the curve, we can suitably
define a point P + Q on the curve
Given a point P on the elliptic curve, we can add

x-times︷ ︸︸ ︷
P + P +· · ·+ P and represent the resulting point as xP
Then the following function is believed to be one-way for
suitable elliptic curves

f (x ,P) = (P, xP)

Think: Can you connect this assumption to the discrete log
problem?

Candidate OWF



One-way Permutations

Definition
A function f : {0, 1}n → {0, 1}n is a one-way permutation if it is a
one-way function and the function f is a bijection

We introduce this primitive because the construction of
pseudorandom generators from one-way permutations is
significantly more intuitive than the construction of pseudorandom
generators from OWF

Candidate OWF



Appendix: Efficient Inversion of Efficiently Computable
Functions I

We shall show the following result

Theorem
Let f : {0, 1}n → {0, 1}n be a function that can be efficiently
computed. If P = NP then there exists an efficient algorithm to
find an inverse x ′ of y , where y = f (x) for some x ∈ {0, 1}n

Candidate OWF



Appendix: Efficient Inversion of Efficiently Computable
Functions II

Before we begin the proof of the theorem, let me emphasize that
there is always an inefficient algorithm to find x ′, an inverse of y

Invert-Ineffcient (y):
1 For x ′ ∈ {0, 1}n : If f (x ′) == y , then return x ′

2 Return −1

This is an inefficient algorithm to compute an inverse of y = f (x)

Candidate OWF



Appendix: Efficient Inversion of Efficiently Computable
Functions III

Let us prove the theorem now. First, let us introduce a few
notations.

Recall f : {0, 1}n → {0, 1}n is the function

Let ϕ(x) be a 3-SAT formula that tests whether f (x) = y or
not. That is, ϕ(x) evaluates to true if and only if f (x) = y .

If f can be evaluated in polynomial time, then the size of ϕ(x)
is polynomial in n

If P = NP then we can efficiently determine: Is ϕ(x)
satisfiable or not

Candidate OWF



Appendix: Efficient Inversion of Efficiently Computable
Functions IV

Let us introduce the notion of a partial assignment of variables
{x1, x2, . . . , xn}

Consider the following example.

ϕ(x) = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)

The formula “ϕ(x) under the restriction xi 7→ b,” is obtained
by substituting b as the value of xi in the formula ϕ(x) and
simplifying. For example, “ϕ(x) under the restriction x1 7→ 0”
is the following formula

ϕ(x)|x1 7→0 = (0 ∨ x2 ∨ ¬x3) ∧ (¬0 ∨ x2 ∨ x3)

= (0 ∨ x2 ∨ ¬x3) ∧ (1 ∨ x2 ∨ x3)

= (x2 ∨ ¬x3)

Candidate OWF



Appendix: Efficient Inversion of Efficiently Computable
Functions V

Given a set of partial assignments
assign = {xi1 7→ b1, xi2 7→ b2, . . . , xik 7→ bk}, we define
ϕ(x)|assign by setting the values of xi1 , . . . , xik as b1, . . . , bk in
ϕ(x) and simplifying

Again, if P = NP and f is efficiently computable, then it is
efficient to find whether ϕ(x)|assign is satisfiable or not

Candidate OWF



Appendix: Efficient Inversion of Efficiently Computable
Functions VI

Now consider the following algorithm. We will construct a solution
x1x2 . . . xn such that f (x1x2 . . . xn) = y one bit at a time.

Find_Inverse(y):
1 Let ϕ(x) be the 3-SAT formula mentioned above
2 If ϕ(x) is not satisfiable, then return -1
3 assign = ∅
4 For i = 1 to n:

1 result = Test whether “ϕ(x)|assign∪{xi 7→0}” is satisfiable or not
2 If result == true: assign = assign ∪ {xi 7→ 0}
3 Else: assign = assign ∪ {xi 7→ 1}

5 Return assign

Note that this is an efficient algorithm to compute an inverse of y
if f can be computed efficiently and P = NP

Candidate OWF



Appendix: Defining Addition on Elliptic Curves
Consider the field (R,+,×)

Let us consider the plot of the curve y2 = x3 + ax + b (in this example, we have a = −2 and
b = 4)
Given two points P and Q on the curve, draw the line through them and find R′, the third
intersection point of the line with the curve
Reflect R′ on the X -axis to obtain the point R
We define the point R as the sum P + Q

−3 −2 −1 0 1 2 3 4

−5

0

5

P

Q

R′

R

Candidate OWF


