

Outline

@ Till the previous lecture, the security of our constructions held
against adversaries even if they have unbounded computational
power

o For example, suppose a secret s is shared among 5 parties
using Shamir's secret sharing algorithm such that any set of 3
parties can reconstruct the secret, and the secret is hidden
from the collusion of any 2 parties

e This security holds even if the parties has unbounded
computational power!

e Security guarantees against adversaries with unbounded
computational power is ideal, but most cryptography is
impossible in this setting

e So, we relax the notion of security. We ensure security only
against adversaries that are efficient

Transition: Computational Security

Efficient Algorithm

@ Intuitively, an algorithm is efficient if the running time of the
algorithm is upper-bounded by a polynomial in its input length
o For example, the algorithm Multiply(x, y) takes as input two
n-bit inputs x and y and outputs the binary representation of
the product of the two numbers x and y. The length of the
input of this algorithm is f(x,y)] = 2n. Note that the number
x is exponentially larger than the “length of x.” For instance,
the number 100 needs only 7 bits for binary representation

o The algorithm Prime(x) takes as input an n-bit input x and
tests whether it is a prime or not. And efficient algorithm to
test primality will have running time polynomial in n

o GCD(x,y) is the algorithm that takes n-bit numbers x and y,
and outputs the binary representation of their greatest
common divisor. And efficient algorithm to compute the GCD
of integers will have running time at most a polynomial in n

Transition: Computational Security

Example |

@ Let us consider the example of multiplying two n-bit numbers

@ Consider the following code

Multiply-vl (x,y):
Q Letr=0
@ Foriel[l,....y]: r+=x
© Return r

@ This is a correct algorithm to multiply the two numbers x and
y. But its running time is proportional to y, which can be
exponential in n. So, this algorithm is not efficient

Transition: Computational Security

Example Il

@ Let us consider another code of multiplying two n-bit numbers

@ Consider the following code

Multiply-v2 (x, y):

© Let M be the table that stores the answer x x y at the
matrix entry (x,y)

@ Perform binary search (or direct memory addressing) to find
the entry M(x, y) and output this entry

@ Binary search takes time linear in n. But the length of the
overall code is 22", This is also considered inefficient

Transition: Computational Security

Example Il

e Consider the following code to multiply two n-bit numbers

Multiply-v3 (x, y):
© Let xox7...x,_1 be the binary representation of x
© Let yoy1...y,_1 be the binary representation of y
© Let ¢ =0 (carry bit)
Q Forie{0,....n—1}:

e t = x; + yi + c (addition over integers)
o Ift>2thensetc=1elsec=0
o Let zi = (t%2)

Q Letz,=c¢

@ Return zz1...z,-12,

@ The length of this code is linear in n and its running time is
also linear in n

@ This is an efficient algorithm for addition

Transition: Computational Security

Another Example |

@ Suppose we want to test whether an n-bit input is a prime
number or not

Is_Prime (x):

o Forie{2,...,|v/x|}: If i divides x then return false

o Return true

@ This algorithm runs in time proportional to v/x, which is
exponential in n. This is not an efficient algorithm for
primality testing!

Transition: Computational Security

Another Example

@ Until (roughly) 15 years ago, we only knew a probabilistic
algorithm that was efficient

@ It was a very big open problem to design a deterministic
efficient algorithm for primality testing

e Finally, Agrawal-Kayal-Saxena (AKS) provided the first
deterministic primality testing algorithm

Transition: Computational Security

Factoring

@ Consider the task of finding a divisor of a 2n-bit number x

@ When x = pg, where p and g are n-bit prime numbers, we
believe that there is no efficient algorithm for this task

@ Note that this is a believe and not proven!

o Note that, it is easy to find a divisor when x is even. It may
also be easy to find divisors of x when x has small prime

factors. But when x is the product of two n-bit prime
numbers, then we believe that finding a divisor of x is hard.

Transition: Computational Security

Food for Thought

@ Write down efficient algorithms for the following tasks

o Perform division of x by y (output both the quotient and the
remainder)

e Finding the GCD of x and y, two n-bit integers

o Multiply two polynomial p(X) and g(X) that are of degree n
and have binary coefficients

o Multiply two n x n matrices with field entries

e Find g%, where g is a generator of a group

@ Read about the Fast Fourier Transform

Transition: Computational Security

Why do Hard Problems Exist?

o If the complexity class P is equal to the complexity class NP,
then there are no hard problems

@ For example, suppose given a 3-SAT formula ¢ over n
variables we can efficiently determine whether it has a
satisfiable solution or not. If this is the case then P = NP.
And in this case, there will be no hard problems

@ So, cryptographers rely on P # NP and additional assumptions

Transition: Computational Security

One-way Functions |

o Let f: {0,1}" — {0,1}" be a function that can be computed
in polynomial time (i.e., polynomial in n)
e Consider any efficient adversary A
@ Define the following experiment
@ Sample x & {0,1}"
@ Compute y = f(x)
© Give y to the adversary A
@ Obtain its reply x’ = A(x)
Q Letz=(f(x)==y)
@ We want the probability

P |z =true: x <& {0,1}",y = f(x),z = (A(y) == y)} <27

Transition: Computational Security

One-way Functions

Explanation of the definition
@ So, one-way functions are

o Easy to evaluate, but
e Hard to invert
@ The variable z takes value {true, false}. It is true if and only if
the adversary A produces a pre-image of y
@ Note: we insist that the adversary has to produce any
pre-image of y. It need not necessarily produce x

o For example, a function f(x) =0 for all x € {0,1}" is not a
one-way function. Because, consider the adversary that
outputs A(y) = 0". We always have f(0") = f(x). Hence, the
probability of z = true is 1!

Transition: Computational Security

One-way Functions Il

@ If P = NP then one-way functions cannot exist! (We can
efficiently invert any function. Think: Why?)

Transition: Computational Security

One-way Functions |V

@ A weak one-way function has

1

P |z =true: x < {0,1}",y = f(x),z = (A(y) == y)] S 1_W(n)

e If weak one-way functions exist then one-way functions also
exist. That is, given any weak one-way function we can
construct a one-way function.

Transition: Computational Security

Next Lecture

@ We shall consider candidate constructions of one-way and
weak one-way functions (we believe that these functions are
one-way functions)

Transition: Computational Security

