Lecture 18: Introduction to "Security against Computationally Bounded Adversaries"

Outline

- Till the previous lecture, the security of our constructions held against adversaries even if they have unbounded computational power
- For example, suppose a secret s is shared among 5 parties using Shamir's secret sharing algorithm such that any set of 3 parties can reconstruct the secret, and the secret is hidden from the collusion of any 2 parties
- This security holds even if the parties has unbounded computational power!
- Security guarantees against adversaries with unbounded computational power is ideal, but most cryptography is impossible in this setting
- So, we relax the notion of security. We ensure security only against adversaries that are efficient

Efficient Algorithm

- Intuitively, an algorithm is efficient if the running time of the algorithm is upper-bounded by a polynomial in its input length
- For example, the algorithm Multiply (x, y) takes as input two n-bit inputs x and y and outputs the binary representation of the product of the two numbers x and y. The length of the input of this algorithm is $|(x, y)|=2 n$. Note that the number x is exponentially larger than the "length of x." For instance, the number 100 needs only 7 bits for binary representation
- The algorithm Prime (x) takes as input an n-bit input x and tests whether it is a prime or not. And efficient algorithm to test primality will have running time polynomial in n
- $\operatorname{GCD}(x, y)$ is the algorithm that takes n-bit numbers x and y, and outputs the binary representation of their greatest common divisor. And efficient algorithm to compute the GCD of integers will have running time at most a polynomial in n

Example I

- Let us consider the example of multiplying two n-bit numbers
- Consider the following code

Multiply-v1 (x, y) :
(1) Let $r=0$
(2) For $i \in[1, \ldots, y]: r+=x$
(3) Return r

- This is a correct algorithm to multiply the two numbers x and y. But its running time is proportional to y, which can be exponential in n. So, this algorithm is not efficient

Example II

- Let us consider another code of multiplying two n-bit numbers
- Consider the following code

Multiply-v2 (x, y) :
(1) Let M be the table that stores the answer $x \times y$ at the matrix entry (x, y)
(2) Perform binary search (or direct memory addressing) to find the entry $M(x, y)$ and output this entry

- Binary search takes time linear in n. But the length of the overall code is $2^{2 n}$. This is also considered inefficient

Example III

- Consider the following code to multiply two n-bit numbers

Multiply-v3 (x, y) :
(1) Let $x_{0} x_{1} \ldots x_{n-1}$ be the binary representation of x
(2) Let $y_{0} y_{1} \ldots y_{n-1}$ be the binary representation of y
(3) Let $c=0$ (carry bit)
(4) For $i \in\{0, \ldots, n-1\}$:

- $t=x_{i}+y_{i}+c$ (addition over integers)
- If $t \geqslant 2$ then set $c=1$, else $c=0$
- Let $z_{i}=(t \% 2)$
(5) Let $z_{n}=c$
(6) Return $z_{0} z_{1} \ldots z_{n-1} z_{n}$
- The length of this code is linear in n and its running time is also linear in n
- This is an efficient algorithm for addition

Another Example I

- Suppose we want to test whether an n-bit input is a prime number or not
Is_Prime (x):
- For $i \in\{2, \ldots,\lfloor\sqrt{x}\rfloor\}$: If i divides x then return false
- Return true
- This algorithm runs in time proportional to \sqrt{x}, which is exponential in n. This is not an efficient algorithm for primality testing!

Another Example II

- Until (roughly) 15 years ago, we only knew a probabilistic algorithm that was efficient
- It was a very big open problem to design a deterministic efficient algorithm for primality testing
- Finally, Agrawal-Kayal-Saxena (AKS) provided the first deterministic primality testing algorithm

Factoring

- Consider the task of finding a divisor of a $2 n$-bit number x
- When $x=p q$, where p and q are n-bit prime numbers, we believe that there is no efficient algorithm for this task
- Note that this is a believe and not proven!
- Note that, it is easy to find a divisor when x is even. It may also be easy to find divisors of x when x has small prime factors. But when x is the product of two n-bit prime numbers, then we believe that finding a divisor of x is hard.

Food for Thought

- Write down efficient algorithms for the following tasks
- Perform division of x by y (output both the quotient and the remainder)
- Finding the GCD of x and y, two n-bit integers
- Multiply two polynomial $p(X)$ and $q(X)$ that are of degree n and have binary coefficients
- Multiply two $n \times n$ matrices with field entries
- Find g^{x}, where g is a generator of a group
- Read about the Fast Fourier Transform

Why do Hard Problems Exist?

- If the complexity class P is equal to the complexity class NP, then there are no hard problems
- For example, suppose given a 3-SAT formula ϕ over n variables we can efficiently determine whether it has a satisfiable solution or not. If this is the case then $P=N P$.
And in this case, there will be no hard problems
- So, cryptographers rely on $\mathrm{P} \neq \mathrm{NP}$ and additional assumptions

One-way Functions I

- Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a function that can be computed in polynomial time (i.e., polynomial in n)
- Consider any efficient adversary \mathcal{A}
- Define the following experiment
(1) Sample $x \stackrel{\$}{\leftarrow}\{0,1\}^{n}$
(2) Compute $y=f(x)$
(3) Give y to the adversary \mathcal{A}
(3) Obtain its reply $x^{\prime}=\mathcal{A}(x)$
(6) Let $z=\left(f\left(x^{\prime}\right)==y\right)$
- We want the probability

$$
\mathbb{P}\left[z=\operatorname{true}: x \leftarrow^{\S}\{0,1\}^{n}, y=f(x), z=(\mathcal{A}(y)==y)\right] \leqslant 2^{-c n}
$$

One-way Functions II

Explanation of the definition

- So, one-way functions are
- Easy to evaluate, but
- Hard to invert
- The variable z takes value $\{$ true, false $\}$. It is true if and only if the adversary \mathcal{A} produces a pre-image of y
- Note: we insist that the adversary has to produce any pre-image of y. It need not necessarily produce x
- For example, a function $f(x)=0$ for all $x \in\{0,1\}^{n}$ is not a one-way function. Because, consider the adversary that outputs $\mathcal{A}(y)=0^{n}$. We always have $f\left(0^{n}\right)=f(x)$. Hence, the probability of $z=$ true is 1 !

One-way Functions III

- If $P=N P$ then one-way functions cannot exist! (We can efficiently invert any function. Think: Why?)

One-way Functions IV

- A weak one-way function has

$$
\mathbb{P}\left[z=\text { true }: x \leftarrow_{\leftarrow}^{\leftarrow}\{0,1\}^{n}, y=f(x), z=(\mathcal{A}(y)==y)\right] \leqslant 1-\frac{1}{\operatorname{poly}(n)}
$$

- If weak one-way functions exist then one-way functions also exist. That is, given any weak one-way function we can construct a one-way function.

Next Lecture

- We shall consider candidate constructions of one-way and weak one-way functions (we believe that these functions are one-way functions)

