
Lecture 18: Introduction to “Security against
Computationally Bounded Adversaries”

Transition: Computational Security



Outline

Till the previous lecture, the security of our constructions held
against adversaries even if they have unbounded computational
power

For example, suppose a secret s is shared among 5 parties
using Shamir’s secret sharing algorithm such that any set of 3
parties can reconstruct the secret, and the secret is hidden
from the collusion of any 2 parties
This security holds even if the parties has unbounded
computational power!
Security guarantees against adversaries with unbounded
computational power is ideal, but most cryptography is
impossible in this setting
So, we relax the notion of security. We ensure security only
against adversaries that are efficient

Transition: Computational Security



Efficient Algorithm

Intuitively, an algorithm is efficient if the running time of the
algorithm is upper-bounded by a polynomial in its input length

For example, the algorithm Multiply(x , y) takes as input two
n-bit inputs x and y and outputs the binary representation of
the product of the two numbers x and y . The length of the
input of this algorithm is

∣∣(x , y)∣∣ = 2n. Note that the number
x is exponentially larger than the “length of x .” For instance,
the number 100 needs only 7 bits for binary representation
The algorithm Prime(x) takes as input an n-bit input x and
tests whether it is a prime or not. And efficient algorithm to
test primality will have running time polynomial in n
GCD(x , y) is the algorithm that takes n-bit numbers x and y ,
and outputs the binary representation of their greatest
common divisor. And efficient algorithm to compute the GCD
of integers will have running time at most a polynomial in n

Transition: Computational Security



Example I

Let us consider the example of multiplying two n-bit numbers

Consider the following code

Multiply-v1 (x , y):
1 Let r = 0

2 For i ∈ [1, . . . , y ] : r+ = x

3 Return r

This is a correct algorithm to multiply the two numbers x and
y . But its running time is proportional to y , which can be
exponential in n. So, this algorithm is not efficient

Transition: Computational Security



Example II

Let us consider another code of multiplying two n-bit numbers

Consider the following code

Multiply-v2 (x , y):
1 Let M be the table that stores the answer x × y at the

matrix entry (x , y)

2 Perform binary search (or direct memory addressing) to find
the entry M(x , y) and output this entry

Binary search takes time linear in n. But the length of the
overall code is 22n. This is also considered inefficient

Transition: Computational Security



Example III
Consider the following code to multiply two n-bit numbers

Multiply-v3 (x , y):
1 Let x0x1 . . . xn−1 be the binary representation of x

2 Let y0y1 . . . yn−1 be the binary representation of y

3 Let c = 0 (carry bit)

4 For i ∈ {0, . . . , n − 1} :
t = xi + yi + c (addition over integers)
If t > 2 then set c = 1, else c = 0
Let zi = (t%2)

5 Let zn = c

6 Return z0z1 . . . zn−1zn

The length of this code is linear in n and its running time is
also linear in n

This is an efficient algorithm for addition

Transition: Computational Security



Another Example I

Suppose we want to test whether an n-bit input is a prime
number or not
Is_Prime (x):

For i ∈ {2, . . . ,
⌊√

x
⌋
} : If i divides x then return false

Return true

This algorithm runs in time proportional to
√
x , which is

exponential in n. This is not an efficient algorithm for
primality testing!

Transition: Computational Security



Another Example II

Until (roughly) 15 years ago, we only knew a probabilistic
algorithm that was efficient

It was a very big open problem to design a deterministic
efficient algorithm for primality testing

Finally, Agrawal-Kayal-Saxena (AKS) provided the first
deterministic primality testing algorithm

Transition: Computational Security



Factoring

Consider the task of finding a divisor of a 2n-bit number x
When x = pq, where p and q are n-bit prime numbers, we
believe that there is no efficient algorithm for this task
Note that this is a believe and not proven!
Note that, it is easy to find a divisor when x is even. It may
also be easy to find divisors of x when x has small prime
factors. But when x is the product of two n-bit prime
numbers, then we believe that finding a divisor of x is hard.

Transition: Computational Security



Food for Thought

Write down efficient algorithms for the following tasks
Perform division of x by y (output both the quotient and the
remainder)
Finding the GCD of x and y , two n-bit integers
Multiply two polynomial p(X ) and q(X ) that are of degree n
and have binary coefficients
Multiply two n × n matrices with field entries
Find g x , where g is a generator of a group

Read about the Fast Fourier Transform

Transition: Computational Security



Why do Hard Problems Exist?

If the complexity class P is equal to the complexity class NP,
then there are no hard problems
For example, suppose given a 3-SAT formula φ over n
variables we can efficiently determine whether it has a
satisfiable solution or not. If this is the case then P = NP.
And in this case, there will be no hard problems
So, cryptographers rely on P 6= NP and additional assumptions
...

Transition: Computational Security



One-way Functions I

Let f : {0, 1}n → {0, 1}n be a function that can be computed
in polynomial time (i.e., polynomial in n)

Consider any efficient adversary A
Define the following experiment

1 Sample x
$←{0, 1}n

2 Compute y = f (x)
3 Give y to the adversary A
4 Obtain its reply x ′ = A(x)
5 Let z = (f (x ′) == y)

We want the probability

P
[
z = true : x $←{0, 1}n, y = f (x), z =

(
A(y) == y

)]
6 2−cn

Transition: Computational Security



One-way Functions II

Explanation of the definition
So, one-way functions are

Easy to evaluate, but
Hard to invert

The variable z takes value {true, false}. It is true if and only if
the adversary A produces a pre-image of y
Note: we insist that the adversary has to produce any
pre-image of y . It need not necessarily produce x

For example, a function f (x) = 0 for all x ∈ {0, 1}n is not a
one-way function. Because, consider the adversary that
outputs A(y) = 0n. We always have f (0n) = f (x). Hence, the
probability of z = true is 1!

Transition: Computational Security



One-way Functions III

If P = NP then one-way functions cannot exist! (We can
efficiently invert any function. Think: Why?)

Transition: Computational Security



One-way Functions IV

A weak one-way function has

P
[
z = true : x $←{0, 1}n, y = f (x), z =

(
A(y) == y

)]
6 1− 1

poly(n)

If weak one-way functions exist then one-way functions also
exist. That is, given any weak one-way function we can
construct a one-way function.

Transition: Computational Security



Next Lecture

We shall consider candidate constructions of one-way and
weak one-way functions (we believe that these functions are
one-way functions)

Transition: Computational Security


