Lecture 18: Introduction to “Security against Computationally Bounded Adversaries”
Till the previous lecture, the security of our constructions held against adversaries even if they have unbounded computational power.

For example, suppose a secret s is shared among 5 parties using Shamir’s secret sharing algorithm such that any set of 3 parties can reconstruct the secret, and the secret is hidden from the collusion of any 2 parties.

This security holds even if the parties has unbounded computational power!

Security guarantees against adversaries with unbounded computational power is ideal, but most cryptography is impossible in this setting.

So, we relax the notion of security. We ensure security only against adversaries that are efficient.
Efficient Algorithm

Intuitively, an algorithm is efficient if the running time of the algorithm is upper-bounded by a polynomial in its input length.

For example, the algorithm Multiply\((x, y)\) takes as input two \(n\)-bit inputs \(x\) and \(y\) and outputs the binary representation of the product of the two numbers \(x\) and \(y\). The length of the input of this algorithm is \(|(x, y)| = 2n\). Note that the number \(x\) is exponentially larger than the “length of \(x\).” For instance, the number 100 needs only 7 bits for binary representation.

The algorithm Prime\((x)\) takes as input an \(n\)-bit input \(x\) and tests whether it is a prime or not. And efficient algorithm to test primality will have running time polynomial in \(n\).

GCD\((x, y)\) is the algorithm that takes \(n\)-bit numbers \(x\) and \(y\), and outputs the binary representation of their greatest common divisor. And efficient algorithm to compute the GCD of integers will have running time at most a polynomial in \(n\).
Let us consider the example of multiplying two n-bit numbers
Consider the following code

\begin{center}
\begin{tabular}{l}
\textbf{Multiply-v1} (x, y):
\hline
1. Let $r = 0$
2. For $i \in [1, \ldots, y] : r+ = x$
3. Return r
\hline
\end{tabular}
\end{center}

This is a correct algorithm to multiply the two numbers x and y. But its running time is proportional to y, which can be exponential in n. So, this algorithm is not efficient.
Example II

- Let us consider another code of multiplying two n-bit numbers
- Consider the following code

<table>
<thead>
<tr>
<th>Multiply-v2 (x, y):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Let M be the table that stores the answer $x \times y$ at the matrix entry (x, y)</td>
</tr>
<tr>
<td>2. Perform binary search (or direct memory addressing) to find the entry $M(x, y)$ and output this entry</td>
</tr>
</tbody>
</table>

- Binary search takes time linear in n. But the length of the overall code is 2^{2n}. This is also considered inefficient
Example III

- Consider the following code to multiply two \(n \)-bit numbers

```
# Multiply-v3 \((x, y)\):

1. Let \( x_0x_1 \ldots x_{n-1} \) be the binary representation of \( x \)
2. Let \( y_0y_1 \ldots y_{n-1} \) be the binary representation of \( y \)
3. Let \( c = 0 \) (carry bit)
4. For \( i \in \{0, \ldots, n-1\} \):
   - \( t = x_i + y_i + c \) (addition over integers)
   - If \( t \geq 2 \) then set \( c = 1 \), else \( c = 0 \)
   - Let \( z_i = (t\%2) \)
5. Let \( z_n = c \)
6. Return \( z_0z_1 \ldots z_{n-1}z_n \)
```

- The length of this code is linear in \(n \) and its running time is also linear in \(n \)

- This is an efficient algorithm for addition
Suppose we want to test whether an n-bit input is a prime number or not

\[
\text{Is_Prime}(x): \\
\text{For } i \in \{2, \ldots, \lfloor \sqrt{x} \rfloor \} : \text{If } i \text{ divides } x \text{ then return false} \\
\text{Return true}
\]

This algorithm runs in time proportional to \sqrt{x}, which is exponential in n. This is not an efficient algorithm for primality testing!
Until (roughly) 15 years ago, we only knew a probabilistic algorithm that was efficient.

It was a very big open problem to design a deterministic efficient algorithm for primality testing.

Finally, Agrawal-Kayal-Saxena (AKS) provided the first deterministic primality testing algorithm.
Consider the task of finding a divisor of a $2n$-bit number x. When $x = pq$, where p and q are n-bit prime numbers, we believe that there is no efficient algorithm for this task. Note that this is a believe and not proven! Note that, it is easy to find a divisor when x is even. It may also be easy to find divisors of x when x has small prime factors. But when x is the product of two n-bit prime numbers, then we believe that finding a divisor of x is hard.
Write down efficient algorithms for the following tasks

- Perform division of x by y (output both the quotient and the remainder)
- Finding the GCD of x and y, two n-bit integers
- Multiply two polynomial $p(X)$ and $q(X)$ that are of degree n and have binary coefficients
- Multiply two $n \times n$ matrices with field entries
- Find g^x, where g is a generator of a group

Read about the Fast Fourier Transform
If the complexity class P is equal to the complexity class NP, then there are no hard problems.

For example, suppose given a 3-SAT formula ϕ over n variables we can efficiently determine whether it has a satisfiable solution or not. If this is the case then $P = NP$. And in this case, there will be no hard problems.

So, cryptographers rely on $P \neq NP$ and additional assumptions...
Let $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$ be a function that can be computed in polynomial time (i.e., polynomial in n).

Consider any efficient adversary A.

Define the following experiment:

1. Sample $x \leftarrow \{0, 1\}^n$
2. Compute $y = f(x)$
3. Give y to the adversary A
4. Obtain its reply $x' = A(x)$
5. Let $z = (f(x') == y)$

We want the probability

$$
\mathbb{P} \left[z = \text{true} : x \leftarrow \{0, 1\}^n, y = f(x), z = (A(y) == y) \right] \leq 2^{-cn}
$$

Transition: Computational Security
Explanation of the definition

- So, **one-way** functions are
 - Easy to evaluate, but
 - Hard to invert

- The variable z takes value $\{\text{true}, \text{false}\}$. It is true if and only if the adversary \mathcal{A} produces a pre-image of y

- Note: we insist that the adversary has to produce any pre-image of y. It need not necessarily produce x

 - For example, a function $f(x) = 0$ for all $x \in \{0, 1\}^n$ is not a one-way function. Because, consider the adversary that outputs $\mathcal{A}(y) = 0^n$. We always have $f(0^n) = f(x)$. Hence, the probability of $z = \text{true}$ is 1!
If $P = NP$ then one-way functions cannot exist! (We can efficiently invert any function. Think: Why?)
A weak one-way function has

$$\mathbb{P} \left[z = \text{true}: x \leftarrow \{0, 1\}^n, y = f(x), z = (\mathcal{A}(y) == y) \right] \leq 1 - \frac{1}{\text{poly}(n)}$$

If weak one-way functions exist then one-way functions also exist. That is, given any weak one-way function we can construct a one-way function.
We shall consider candidate constructions of one-way and weak one-way functions (we believe that these functions are one-way functions)