Lecture 17: Composing Hashes

・ロト ・ 日 ・ ・ 日 ・ ・

3 x 3

- We will consider some techniques of composing hash functions
- Moreover, we aim to understand why they work or do not work

・ 同 ト ・ 三 ト ・

ヨート

Setting

- Suppose we are given sets \mathcal{A} , \mathcal{B} , and \mathcal{C} such that $|\mathcal{A}| \ge |\mathcal{B}| \ge |\mathcal{C}|$
- \bullet Suppose ${\cal H}$ is a hash function family from the domain ${\cal A}$ to the range ${\cal B}$
- \bullet Suppose ${\cal G}$ is a hash function family from the domain ${\cal B}$ to the range ${\cal C}$
- \bullet We are interested in constructing a new hash function family with domain ${\cal A}$ and range ${\cal C}$

< ロ > < 同 > < 回 > < 回 > < 回 > <

• Suppose we define the following family of hash functions

$$\mathcal{I} = \{ g \circ h \colon h \in \mathcal{H}, g \in \mathcal{G} \}$$

where we define $(g \circ h)(x) := g(h(x))$. These hash functions have domain A and range C

Question

Does this new family of hash functions \mathcal{I} inherit good properties from the hash function families \mathcal{H} and \mathcal{G} ?

• Next we shall formalize one such question. Note that there can be multiple such questions. We only illustrate using one question

- 4 回 ト - 4 回 ト

Formal Question

Suppose the collision probabilities of the hash function families $\mathcal H$ and $\mathcal G$ are α and β respectively. That is,

For distinct
$$x_1, x_2 \in \mathcal{A}$$
, we have $\mathbb{P}\left[h(x_1) = h(x_2) \colon h \stackrel{s}{\leftarrow} \mathcal{H}\right] = \alpha$
For distinct $y_1, y_2 \in \mathcal{B}$, we have $\mathbb{P}\left[g(y_1) = g(y_2) \colon g \stackrel{s}{\leftarrow} \mathcal{G}\right] = \beta$

What is the collision probability of the new hash function family \mathcal{I} ?

・ 同 ト ・ ヨ ト ・ ヨ ト

Iterated Hash IV

- Let us begin our analysis
- For distinct x₁, x₂ ∈ A, we are interested in computing the probability

$$\mathbb{P}\left[(g \circ h)(x_1) = (g \circ h)(x_2) \colon (g \circ h) \xleftarrow{s} \mathcal{I}\right]$$

Note that we can express this collision probability as follows

$$\mathbb{P}\left[(g \circ h)(x_1) = (g \circ h)(x_2) \colon (g \circ h) \stackrel{\$}{\leftarrow} \mathcal{I}\right]$$
$$= \mathbb{P}\left[(g \circ h)(x_1) = (g \circ h)(x_2) \colon h \stackrel{\$}{\leftarrow} \mathcal{H}, g \stackrel{\$}{\leftarrow} \mathcal{G}\right]$$

• Let us represent $y_1 = h(x_1)$ and $y_2 = h(x_2)$

イロト イポト イヨト イヨト

Now, we can write

$$\mathbb{P}\left[(g \circ h)(x_1) = (g \circ h)(x_2) \colon h \stackrel{\$}{\leftarrow} \mathcal{H}, g \stackrel{\$}{\leftarrow} \mathcal{G}\right]$$
$$= \mathbb{P}\left[(g \circ h)(x_1) = (g \circ h)(x_2), y_1 = y_2 \colon h \stackrel{\$}{\leftarrow} \mathcal{H}, g \stackrel{\$}{\leftarrow} \mathcal{G}\right]$$
$$+ \mathbb{P}\left[(g \circ h)(x_1) = (g \circ h)(x_2), y_1 \neq y_2 \colon h \stackrel{\$}{\leftarrow} \mathcal{H}, g \stackrel{\$}{\leftarrow} \mathcal{G}\right]$$

• Note that if $y_1 = y_2$, then we will surely have $(g \circ h)(x_1) = (g \circ h)(x_2)$. So, the probability expression

$$\mathbb{P}\left[(g \circ h)(x_1) = (g \circ h)(x_2), y_1 = y_2 \colon h \stackrel{\$}{\leftarrow} \mathcal{H}, g \stackrel{\$}{\leftarrow} \mathcal{G}\right]$$

is identical to

$$\mathbb{P}\left[y_1 = y_2 \colon h \stackrel{s}{\leftarrow} \mathcal{H}, g \stackrel{s}{\leftarrow} \mathcal{G}\right] = \mathbb{P}\left[y_1 = y_2 \colon h \stackrel{s}{\leftarrow} \mathcal{H}\right] = \alpha$$

Composition

・ロト ・ 御 ト ・ 注 ト ・ 注 ト

Iterated Hash VI

• Note that if $y_1 \neq y_2$, then we can write

$$\mathbb{P}\left[(g \circ h)(x_1) = (g \circ h)(x_2), y_1 \neq y_2 \colon h \stackrel{\$}{\leftarrow} \mathcal{H}, g \stackrel{\$}{\leftarrow} \mathcal{G}\right]$$

=
$$\mathbb{P}\left[(g \circ h)(x_1) = (g \circ h)(x_2)|y_1 \neq y_2 \colon h \stackrel{\$}{\leftarrow} \mathcal{H}, g \stackrel{\$}{\leftarrow} \mathcal{G}\right]$$

$$\times \mathbb{P}\left[y_1 \neq y_2 \colon h \stackrel{\$}{\leftarrow} \mathcal{H}, g \stackrel{\$}{\leftarrow} \mathcal{G}\right]$$

=
$$\mathbb{P}\left[g(y_1) = g(y_2)|y_1 \neq y_2 \colon h \stackrel{\$}{\leftarrow} \mathcal{H}, g \stackrel{\$}{\leftarrow} \mathcal{G}\right]$$

$$\times \mathbb{P}\left[y_1 \neq y_2 \colon h \stackrel{\$}{\leftarrow} \mathcal{H}\right]$$

=
$$\beta(1 - \alpha)$$

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

э

• Adding these two expressions, we get

$$\mathbb{P}\left[(g \circ h)(x_1) = (g \circ h)(x_2) \colon (g \circ h) \xleftarrow{s} \mathcal{I}\right]$$
$$= \alpha + \beta(1 - \alpha) = \alpha + \beta - \alpha\beta$$

- Note that if we have $\alpha = 1/|\mathcal{B}|$ and $\beta = 1/|\mathcal{C}|$, the collision probability of the new hash function family is more than both α and β
- This is not a good universal hash function family (according to the way we have defined our universal hash function family)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Concatenation I

- Suppose there are two hash function families \mathcal{H} and \mathcal{G} with domain \mathcal{D} for both the families, and range \mathcal{R} and \mathcal{R}' , respectively
- Suppose the collision probability of the hash function families \mathcal{H} and \mathcal{G} are α and β , respectively. That is, for any distinct $x_1, x_2 \in \mathcal{D}$ we have

$$\mathbb{P}\left[h(x_1) = h(x_2) \colon h \stackrel{s}{\leftarrow} \mathcal{H}\right] = \alpha$$
$$\mathbb{P}\left[g(x_1) = g(x_2) \colon g \stackrel{s}{\leftarrow} \mathcal{G}\right] = \beta$$

• Now, consider the new hash function family from the domain \mathcal{D} to the range $\mathcal{R} \times \mathcal{R}'$.

$$\mathcal{I} = \left\{ (h \| g) \colon h \in \mathcal{H}, g \in \mathcal{G} \right\},$$

where (h||g)(x) = h(x)||g(x) (the concatenation of h(x) and g(x) is represented by h(x)||g(x))

Concatenation II

- Is this a good family of hash functions? In particular, will this hash function family have low collision probability if \mathcal{H} and \mathcal{G} , each, have low collision probabilities?
- Let us analyze the collision probability of this new hash function family. For distinct $x_1, x_2 \in D$, we are interested in the probability

$$\mathbb{P}\left[(h\|g)(x_1)=(h\|g)(x_2)\colon (h\|g)\stackrel{s}{\leftarrow}\mathcal{I}
ight]$$

• This can equivalently be written as

$$\mathbb{P}\left[h(x_1)=h(x_2),g(x_1)=g(x_2)\colon h\stackrel{s}{\leftarrow}\mathcal{H},g\stackrel{s}{\leftarrow}\mathcal{G}\right]$$

We want this collision probability expression to be αβ. But the events h(x₁) = h(x₂) and g(x₁) = g(x₂) can be related! We will explain this further in the next few slides.

・ 同 ト ・ 国 ト ・ 国 ト

Lesson Learned

Blindly iterating or concatenating hash functions families might yield worse hash function families. We need to be smart in combining hash functions!

・白・ ・ ヨ・ ・

 $\exists \rightarrow$

Problem

Suppose the domain is $\mathcal{D} = \mathbb{F}^n$ and the range is $\mathcal{R} = \mathbb{F}$, for a field $(\mathbb{F}, +, \times)$. We want to design 2-wise independent hash function families from \mathcal{D} to \mathcal{R} .

• First Proposed Solution. In the class, the following solution was first proposed

$$\mathcal{H} = \left\{ h_{a_1,\ldots,a_n} \colon a_1,\ldots,a_n \in \mathbb{F} \right\},$$

where the function $h_{a_1,...,a_n}(x_1,...,x_n) := a_1x_1 + a_1x_2 + \dots + a_nx_n$ • Note that for $x = \overbrace{(0,0,\ldots,0)}^{n\text{-times}}$ the probability $\mathbb{P}\left[h(x) = 0: h \xleftarrow{s} \mathcal{H}\right] = 1$

So, this hash function family is not even 1-wise independent, let alone 2-wise independent

First Example III

• How to fix this? The first observation is the following. For a non-zero $x \in \mathbb{F}^n$ and any $y \in \mathbb{F}$, we have

$$\mathbb{P}\left[h(x) = y \colon h \stackrel{s}{\leftarrow} \mathcal{H}\right] = 1/|\mathbb{F}|$$

So, the "flaw" in our hash function family exists only when $x = 0^n$; otherwise not.

- So, let us prepend 1 to the input x. This will always ensure that x is non-zero!
- Now, we define the new hash function family

$$\mathcal{H} = \left\{ h_{a_0, a_1, \dots, a_n} \colon a_0 a_1, \dots, a_n \in \mathbb{F} \right\},\$$

where the function

$$h_{a_0,a_1,...,a_n}(x_1,...,x_n) := a_0 \cdot 1 + a_1 x_1 + a_1 x_2 + \dots + a_n x_n = a_0 + a_1 x_1 + a_1 x_2 + \dots + a_n x_n$$

Composition

(日本) (日本) (日本)

• This new hash function family has the property that, for distinct $x, x' \in \mathbb{F}^n$ and $y, y' \in \mathbb{F}$, we have

$$\mathbb{P}\left[h(x) = y, h(x') = y' \colon h \stackrel{s}{\leftarrow} \mathcal{H}\right] = \frac{1}{|\mathbb{F}|^2}$$

• So, this is a 2-wise independent hash function family

Problem

Suppose the domain is $\mathcal{D} = \mathbb{F}^n$ and the range is $\mathcal{R} = \mathbb{F}^2$, for a field $(\mathbb{F}, +, \times)$. We want to design 2-wise independent hash function families from \mathcal{D} to \mathcal{R} .

・ロト ・ ア・ ・ ヨト ・ ヨト

- In the previous example, we constructed a 2-wise independent hash function family *H* from domain 𝔽ⁿ to the range 𝔽
- Using the "concatenation idea" we can now try to define the hash function family from domain \mathbb{F}^n to the range \mathbb{F}^2

・ 同 ト ・ ヨ ト ・ ヨ ト

- First Idea. In the class, the proposed idea was to pick to hash functions h, h'
 ^{\$}→ H independently at random, and output the hash (h(x), h'(x))
- Suppose the first hash function is h = h_{a0,a1,...,an} and the second hash function is h' = h_{b0,b1,...,bn}
- For any λ ∈ 𝔽, when b₀ = λa₀, b₁ = λa₁, ..., b_n = λa_n, we have a problem. In this case h'(x) = λh(x) always.
- Think: Why is this an issue? Why is the hash function family not 2-wise independent?

Second Example IV

- Fixing this Issue. We shall fix this issue iteratively.
- We can prove that if it is not the case that $b_0 = \lambda a_0$, $b_1 = \lambda a_1, \ldots, b_n = \lambda a_n$, for some $\lambda \in \mathbb{F}$, then h'(x) is independent and uniformly random over \mathbb{F}
- So, the following hash function family is 2-wise independent from the domain 𝔽ⁿ to the range 𝔽². The hash function family is defined by matrices of rank 2 of the form

$$\begin{pmatrix} a_0 & b_0 \\ a_1 & b_1 \\ \vdots & \vdots \\ a_n & b_n \end{pmatrix}$$

▲御▶ ▲理▶ ▲理≯

• The evaluation of the hash function at $x = (x_1, x_2, ..., x_n)$ is provided by the following matrix multiplication

$$(1, x_1, x_2, \dots, x_n) \begin{pmatrix} a_0 & b_0 \\ a_1 & b_1 \\ \vdots & \vdots \\ a_n & b_n \end{pmatrix}$$

・ロト ・四ト ・ヨト ・ヨト

Problem

Suppose the domain is $\mathcal{D} = \mathbb{F}^n$ and the range is $\mathcal{R} = \mathbb{F}^{n'}$, for a field $(\mathbb{F}, +, \times)$, where n' < n. We want to design 2-wise independent hash function families from \mathcal{D} to \mathcal{R} .

・ロト ・回ト ・ヨト ・ヨト

Third Example II

• The hash function families are defined by the matrices of column rank *n*' of the following form

$$\begin{pmatrix} a_{0,1} & a_{0,2} & \cdots & a_{0,n'} \\ a_{1,1} & a_{1,2} & \cdots & a_{1,n'} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n'} \end{pmatrix}$$

• The evaluation of the above hash function at $x = (x_1, \dots, x_n)$ is defined by the matrix multiplication

$$(1, x_1, x_2, \dots, x_n) \cdot \begin{pmatrix} a_{0,1} & a_{0,2} & \cdots & a_{0,n'} \\ a_{1,1} & a_{1,2} & \cdots & a_{1,n'} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n'} \end{pmatrix}$$

This hash function family is 2-wise independent

< ⊒ >

• Concatenation works well, but we have to be careful which functions we choose to concatenate (choosing functions independently might not be a good idea)!

・ 同 ト ・ ヨ ト ・ ヨ ト