
Lecture 16: Message-authentication Codes

MAC

Outline

In today’s lecture we will learn about Message Authentication
Codes (MACs)
We shall define security notions that we expect from such a
primitive
Finally, we shall construct MACs using various kinds of hash
function families

MAC

Introduction: MAC

A Message Authentication Scheme (MAC) is a private-key
version of signatures involving two parties, the Signer and the
Verifier

Private-key: This means that the signer and the verifier met
yesterday and established a secret-key
Signature: This means that the verifier can verify that the
signer endorses a particular message, and an eavesdropper
cannot forge such endorsements

Defined by three algorithms (Gen, Sign,Ver)
Secret-key Generation: sk = Gen()
Signing Messages: Compute the tag τ = Signsk(m)
The Signer sends (m, τ) to the verifier
Verifying Message-tag pairs: z = Versk(m, τ) ∈ {0, 1}. Output
z = 1 indicates that the message-tag pair is accepted, while
output z = 0 indicates that the message-tag pair is not
accepted.

MAC

Pictorial Summary

Yesterday

Today

Signer Verifier

sk = Gen()

τ = Signsk(m)

Send (m, τ)

z = Versk(m, τ)

MAC

Comments

No Secrecy: Previously, we saw that primitives like encryption
and secret sharing require hiding some information from the
adversary. In MACs, the message m is in the clear! We want
to ensure that an adversary should not be able to generate
tags that verify of new messages.
Secrecy of sk: The secrecy of sk is paramount. If the
secret-key sk is obtained by an adversary, then the adversary
can use the signing algorithm to sign arbitrary messages!

MAC

Correctness

Let the message space beM
Intuition: We want to ensure that the tag for any message
m ∈M that is generated by the honest signer should always
verify
Mathematically, we can write this as: For every message
m ∈M, we have

P
[
z = 1 : sk = Gen(), τ = Signsk(m), z = Versk(m, τ)

]
= 1

English Translation: The probability that z = 1 is 1, where the
secret-key sk = Gen(), the tag τ = Signsk(m), and the output
z = Versk(m, τ).
Note that this guarantee is for every message m. We do not
want the signing algorithm to create verifiable tags only for a
subset of messages
The probability is over the choice of sk output by the
generation algorithm Gen()

MAC

Message Integrity

We want to ensure that an adversary cannot tamper the
message m into a different message m′ such that the original
tag τ is also a valid tag for the adversarial message m′

Let T be the range of the signing algorithm (i.e., the set of all
possible tags)
Message Integrity can be ensured if the following property
holds. For all distinct m,m′ ∈M, we have

P
[
Signsk(m

′) = τ |Signsk(m) = τ
]
6

1
|T |

Note that we cannot insist on the above probability to be 0
when the set of all possible tags is smaller than the set of all
messages

This probability guarantee required above seems similar to the
guarantee provided by Universal Hash-function Family

MAC

Unforgeability

We want to ensure that an adversary cannot forge the tag of a
new message m′ by observing one message-tag pair (m, τ)
Unforgeability can be ensured if the following property holds.
For all distinct m,m′ ∈M, we have

P
[
Signsk(m

′) = τ ′|Signsk(m) = τ
]
=

1
|T |

Again, note that we cannot insist on the above probability to
be 0 when the set of all possible tags is smaller than the set of
all messages

This probability guarantee required above seems similar to the
guarantee provided by 2-wise Independent Hash-function
Family

MAC

Food for thought

Suppose we want to design a MAC that remains unforgeable
even when the adversary has seen (k − 1) message-tag pairs.
What probability guarantee will be needed?

MAC

Construction

Let H = {h1, . . . , hK} be a hash function family with domain
M and range T
Construction

Gen() returns sk $←{1, . . . ,K}

Signsk(m) returns hsk(m)

Versk(m, τ) returns whether τ is identical to hsk(m)

This scheme is correct
If H is a universal hash-function family, then the MAC scheme
(Gen, Sign,Ver) ensures message integrity
If H is a 2-wise independent hash-function family, then the
MAC scheme (Gen, Sign,Ver) is unforgeable (since 2-wise
independence implies universal, this will also ensure message
integrity)

MAC

Food for thought

Suppose we want to construct a MAC so that if t-parties
among a set of n-parties decide to endorse a message m, then
they can add a tag that the verifier can verify. How to
construct such a scheme?

MAC

