Lecture 16: Message-authentication Codes
In today’s lecture we will learn about Message Authentication Codes (MACs)

- We shall define security notions that we expect from such a primitive
- Finally, we shall construct MACs using various kinds of hash function families
A Message Authentication Scheme (MAC) is a private-key version of signatures involving two parties, the Signer and the Verifier:

- Private-key: This means that the signer and the verifier met yesterday and established a secret-key.
- Signature: This means that the verifier can verify that the signer endorses a particular message, and an eavesdropper cannot forge such endorsements.

Defined by three algorithms (Gen, Sign, Ver):

- Secret-key Generation: sk = Gen()
- Signing Messages: Compute the tag $\tau = \text{Sign}_{sk}(m)$
- The Signer sends (m, τ) to the verifier
- Verifying Message-tag pairs: $z = \text{Ver}_{sk}(m, \tau) \in \{0, 1\}$. Output $z = 1$ indicates that the message-tag pair is accepted, while output $z = 0$ indicates that the message-tag pair is not accepted.
Pictorial Summary

Yesterday

Signer

\[\text{sk} = \text{Gen}() \]

Verifier

\[\tau = \text{Sign}_{\text{sk}}(m) \]

Send \((m, \tau)\)

Today

\[z = \text{Ver}_{\text{sk}}(m, \tau) \]
No Secrecy: Previously, we saw that primitives like encryption and secret sharing require hiding some information from the adversary. In MACs, the message m is in the clear! We want to ensure that an adversary should not be able to generate tags that verify of new messages.

Secrecy of sk: The secrecy of sk is paramount. If the secret-key sk is obtained by an adversary, then the adversary can use the signing algorithm to sign arbitrary messages!
Correctness

- Let the message space be \mathcal{M}
- Intuition: We want to ensure that the tag for any message $m \in \mathcal{M}$ that is generated by the honest signer should always verify.
- Mathematically, we can write this as: For every message $m \in \mathcal{M}$, we have

$$P[z = 1 : sk = \text{Gen}(), \tau = \text{Sign}_{sk}(m), z = \text{Ver}_{sk}(m, \tau)] = 1$$

- English Translation: The probability that $z = 1$ is 1, where the secret-key $sk = \text{Gen}()$, the tag $\tau = \text{Sign}_{sk}(m)$, and the output $z = \text{Ver}_{sk}(m, \tau)$.
- Note that this guarantee is for every message m. We do not want the signing algorithm to create verifiable tags only for a subset of messages.
- The probability is over the choice of sk output by the generation algorithm $\text{Gen}()$.
Message Integrity

- We want to ensure that an adversary cannot tamper the message m into a different message m' such that the original tag τ is also a valid tag for the adversarial message m'.
- Let \mathcal{T} be the range of the signing algorithm (i.e., the set of all possible tags).
- Message Integrity can be ensured if the following property holds. For all distinct $m, m' \in \mathcal{M}$, we have

$$\mathbb{P} \left[\text{Sign}_{sk}(m') = \tau | \text{Sign}_{sk}(m) = \tau \right] \leq \frac{1}{|\mathcal{T}|}$$

- Note that we cannot insist on the above probability to be 0 when the set of all possible tags is smaller than the set of all messages.
- This probability guarantee required above seems similar to the guarantee provided by Universal Hash-function Family.
Unforgeability

- We want to ensure that an adversary cannot forge the tag of a new message m' by observing one message-tag pair (m, τ).
- Unforgeability can be ensured if the following property holds. For all distinct $m, m' \in \mathcal{M}$, we have

$$
\mathbb{P} \left[\text{Sign}_{sk}(m') = \tau' | \text{Sign}_{sk}(m) = \tau \right] = \frac{1}{|T|}
$$

- Again, note that we cannot insist on the above probability to be 0 when the set of all possible tags is smaller than the set of all messages.
- This probability guarantee required above seems similar to the guarantee provided by 2-wise Independent Hash-function Family.
Suppose we want to design a MAC that remains unforgeable even when the adversary has seen \((k - 1)\) message-tag pairs. What probability guarantee will be needed?
Let $\mathcal{H} = \{h_1, \ldots, h_K\}$ be a hash function family with domain \mathcal{M} and range \mathcal{T}.

Construction

- $\text{Gen}()$ returns $\text{sk} \leftarrow \{1, \ldots, K\}$
- $\text{Sign}_{\text{sk}}(m)$ returns $h_{\text{sk}}(m)$
- $\text{Ver}_{\text{sk}}(m, \tau)$ returns whether τ is identical to $h_{\text{sk}}(m)$

This scheme is correct.

If \mathcal{H} is a universal hash-function family, then the MAC scheme $(\text{Gen}, \text{Sign}, \text{Ver})$ ensures message integrity.

If \mathcal{H} is a 2-wise independent hash-function family, then the MAC scheme $(\text{Gen}, \text{Sign}, \text{Ver})$ is unforgeable (since 2-wise independence implies universal, this will also ensure message integrity).
Suppose we want to construct a MAC so that if t-parties among a set of n-parties decide to endorse a message m, then they can add a tag that the verifier can verify. How to construct such a scheme?