


Outline

@ In today's lecture we will learn about Message Authentication
Codes (MACs)

@ We shall define security notions that we expect from such a
primitive

e Finally, we shall construct MACs using various kinds of hash
function families

MAC



Introduction: MAC

@ A Message Authentication Scheme (MAC) is a private-key
version of signatures involving two parties, the Signer and the
Verifier

o Private-key: This means that the signer and the verifier met
yesterday and established a secret-key

e Signature: This means that the verifier can verify that the
signer endorses a particular message, and an eavesdropper
cannot forge such endorsements

@ Defined by three algorithms (Gen, Sign, Ver)

Secret-key Generation: sk = Gen()

Signing Messages: Compute the tag 7 = Signg, (m)

The Signer sends (m, T) to the verifier

Verifying Message-tag pairs: z = Verg(m, 7) € {0,1}. Output

z = 1 indicates that the message-tag pair is accepted, while

output z = 0 indicates that the message-tag pair is not

accepted.

MAC



Pictorial Summary

Signer : Verifier

sk = Gen()

/ \ Yesterday

T = Signg(m)

Send z(m, T) Today

z = Verg(m, )



Comments

@ No Secrecy: Previously, we saw that primitives like encryption
and secret sharing require hiding some information from the
adversary. In MACs, the message m is in the clearl We want
to ensure that an adversary should not be able to generate
tags that verify of new messages.

@ Secrecy of sk: The secrecy of sk is paramount. If the
secret-key sk is obtained by an adversary, then the adversary
can use the signing algorithm to sign arbitrary messages!

MAC



Correctness

o Let the message space be M

@ Intuition: We want to ensure that the tag for any message
m € M that is generated by the honest signer should always
verify

o Mathematically, we can write this as: For every message
m € M, we have

P [z = 1: sk = Gen(), 7 = Signg (m), z = Verg(m,7)] =1

@ English Translation: The probability that z = 1 is 1, where the
secret-key sk = Gen(), the tag 7 = Sign, (m), and the output
z = Verg(m, ).

@ Note that this guarantee is for every message m. We do not
want the signing algorithm to create verifiable tags only for a
subset of messages

@ The probability is over the choice of sk output by the
generation algorithm Gen()

MAC



Message Integrity

@ We want to ensure that an adversary cannot tamper the
message m into a different message m’ such that the original
tag 7 is also a valid tag for the adversarial message m’

@ Let T be the range of the signing algorithm (i.e., the set of all
possible tags)

@ Message Integrity can be ensured if the following property
holds. For all distinct m, m" € M, we have

P [Signsk(m’) = 7|Signg(m) = T] < ‘71,‘

o Note that we cannot insist on the above probability to be 0
when the set of all possible tags is smaller than the set of all
messages

@ This probability guarantee required above seems similar to the
guarantee provided by Universal Hash-function Family

MAC



Unforgeability

@ We want to ensure that an adversary cannot forge the tag of a
new message m’ by observing one message-tag pair (m, )

@ Unforgeability can be ensured if the following property holds.
For all distinct m, m" € M, we have

1

P [Signg (m') = 7/|Signg(m) = 7] = 7

e Again, note that we cannot insist on the above probability to
be 0 when the set of all possible tags is smaller than the set of
all messages

@ This probability guarantee required above seems similar to the
guarantee provided by 2-wise Independent Hash-function
Family

MAC



Food for thought

@ Suppose we want to design a MAC that remains unforgeable
even when the adversary has seen (k — 1) message-tag pairs.
What probability guarantee will be needed?

MAC



Construction

Let H = {h1,..., hg} be a hash function family with domain
M and range T

Construction

o Gen() returns sk & {1,...,K}

o Signg (m) returns hg(m)

o Verg(m,7) returns whether 7 is identical to hg(m)

This scheme is correct

If H is a universal hash-function family, then the MAC scheme
(Gen, Sign, Ver) ensures message integrity

If H is a 2-wise independent hash-function family, then the
MAC scheme (Gen, Sign, Ver) is unforgeable (since 2-wise
independence implies universal, this will also ensure message
integrity)

MAC



Food for thought

@ Suppose we want to construct a MAC so that if t-parties
among a set of n-parties decide to endorse a message m, then
they can add a tag that the verifier can verify. How to
construct such a scheme?

MAC



