
Lecture 16: Message-authentication Codes
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Outline

In today’s lecture we will learn about Message Authentication
Codes (MACs)
We shall define security notions that we expect from such a
primitive
Finally, we shall construct MACs using various kinds of hash
function families
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Introduction: MAC

A Message Authentication Scheme (MAC) is a private-key
version of signatures involving two parties, the Signer and the
Verifier

Private-key: This means that the signer and the verifier met
yesterday and established a secret-key
Signature: This means that the verifier can verify that the
signer endorses a particular message, and an eavesdropper
cannot forge such endorsements

Defined by three algorithms (Gen, Sign,Ver)
Secret-key Generation: sk = Gen()
Signing Messages: Compute the tag τ = Signsk(m)
The Signer sends (m, τ) to the verifier
Verifying Message-tag pairs: z = Versk(m, τ) ∈ {0, 1}. Output
z = 1 indicates that the message-tag pair is accepted, while
output z = 0 indicates that the message-tag pair is not
accepted.
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Pictorial Summary

Yesterday

Today

Signer Verifier

sk = Gen()

τ = Signsk(m)

Send (m, τ)

z = Versk(m, τ)
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Comments

No Secrecy: Previously, we saw that primitives like encryption
and secret sharing require hiding some information from the
adversary. In MACs, the message m is in the clear! We want
to ensure that an adversary should not be able to generate
tags that verify of new messages.
Secrecy of sk: The secrecy of sk is paramount. If the
secret-key sk is obtained by an adversary, then the adversary
can use the signing algorithm to sign arbitrary messages!
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Correctness

Let the message space beM
Intuition: We want to ensure that the tag for any message
m ∈M that is generated by the honest signer should always
verify
Mathematically, we can write this as: For every message
m ∈M, we have

P
[
z = 1 : sk = Gen(), τ = Signsk(m), z = Versk(m, τ)

]
= 1

English Translation: The probability that z = 1 is 1, where the
secret-key sk = Gen(), the tag τ = Signsk(m), and the output
z = Versk(m, τ).
Note that this guarantee is for every message m. We do not
want the signing algorithm to create verifiable tags only for a
subset of messages
The probability is over the choice of sk output by the
generation algorithm Gen()
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Message Integrity

We want to ensure that an adversary cannot tamper the
message m into a different message m′ such that the original
tag τ is also a valid tag for the adversarial message m′

Let T be the range of the signing algorithm (i.e., the set of all
possible tags)
Message Integrity can be ensured if the following property
holds. For all distinct m,m′ ∈M, we have

P
[
Signsk(m

′) = τ |Signsk(m) = τ
]
6

1
|T |

Note that we cannot insist on the above probability to be 0
when the set of all possible tags is smaller than the set of all
messages

This probability guarantee required above seems similar to the
guarantee provided by Universal Hash-function Family
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Unforgeability

We want to ensure that an adversary cannot forge the tag of a
new message m′ by observing one message-tag pair (m, τ)
Unforgeability can be ensured if the following property holds.
For all distinct m,m′ ∈M, we have

P
[
Signsk(m

′) = τ ′|Signsk(m) = τ
]
=

1
|T |

Again, note that we cannot insist on the above probability to
be 0 when the set of all possible tags is smaller than the set of
all messages

This probability guarantee required above seems similar to the
guarantee provided by 2-wise Independent Hash-function
Family
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Food for thought

Suppose we want to design a MAC that remains unforgeable
even when the adversary has seen (k − 1) message-tag pairs.
What probability guarantee will be needed?
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Construction

Let H = {h1, . . . , hK} be a hash function family with domain
M and range T
Construction

Gen() returns sk $←{1, . . . ,K}

Signsk(m) returns hsk(m)

Versk(m, τ) returns whether τ is identical to hsk(m)

This scheme is correct
If H is a universal hash-function family, then the MAC scheme
(Gen, Sign,Ver) ensures message integrity
If H is a 2-wise independent hash-function family, then the
MAC scheme (Gen, Sign,Ver) is unforgeable (since 2-wise
independence implies universal, this will also ensure message
integrity)
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Food for thought

Suppose we want to construct a MAC so that if t-parties
among a set of n-parties decide to endorse a message m, then
they can add a tag that the verifier can verify. How to
construct such a scheme?
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