Lecture 15: Universal Hashing: Minimizing Collisions

Universal Hashing

■▶ ■= ののの

- *k*-wise Independence
 - Intuition: First k inputs are answered uniformly at random
 - Formally: For all distinct $x_1, \ldots, x_k \in \mathcal{D}$ and $y_1, \ldots, y_k \in \mathcal{R}$ we have

$$\mathbb{P}\left[h(x_1) = y_1, h(x_2) = y_2, \dots, h(x_k) = y_k \colon h \stackrel{s}{\leftarrow} \mathcal{H}\right] = \frac{1}{|\mathcal{R}|^k}$$

• One Construction: The set of all degree < k polynomials.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のQ@

• 2-wise Independence/Pairwise Independence

- Special case of k = 2 mentioned above
- Formally: For all distinct $x_1, x_2 \in \mathcal{D}$ and $y_1, y_2 \in \mathcal{R}$ we have

$$\mathbb{P}\left[h(x_1) = y_1, h(x_2) = y_2 \colon h \stackrel{s}{\leftarrow} \mathcal{H}\right] = \frac{1}{|\mathcal{R}|^2}$$

• One Construction: Linear functions

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

Recall III

• Universal Hash Function Family

- Intuition: Probability of Collision is low
- Formally: For all distinct $x_1, x_2 \in \mathcal{D}$ we have

$$\mathbb{P}\left[h(x_1)=h(x_2)\colon h\stackrel{s}{\leftarrow}\mathcal{H}\right]\leqslant \frac{1}{|\mathcal{R}|}$$

• Construction: Any 2-wise independent hash function family is also universal (we proved this result). The collision probability $\mathbb{P}\left[h(x_1) = h(x_2): h \stackrel{\$}{\leftarrow} \mathcal{H}\right] = \frac{1}{|\mathcal{R}|}$ in this case.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

Recall IV

- Constructing Better Universal Hash Function Families

 - When the range is smaller than the domain, we saw that any 2-wise independent hash function family achieves collision probability $\mathbb{P}\left[h(x_1) = h(x_2): h \stackrel{\$}{\leftarrow} \mathcal{H}\right] = \frac{1}{|\mathcal{R}|}$
 - When the range is smaller than the domain, can we have collision probability $\mathbb{P}\left[h(x_1) = h(x_2) \colon h \stackrel{\$}{\leftarrow} \mathcal{H}\right] < \frac{1}{|\mathcal{R}|}$ for all distinct $x_1, x_2 \in \mathcal{D}$?
 - In the previous lecture we saw that we can construct one hash function family \mathcal{H} , for $|\mathcal{D}| = 4$, $|\mathcal{R}| = 2$ such that the collision probability is $= \frac{1}{3} < \frac{1}{|\mathcal{R}|} = \frac{1}{2}!$
 - Can we have <u>even lower</u> collision probabilities? In this lecture we shall prove that a lower collision probability is impossible!

◆□> < □> < □> < □> < □> < □>

Lower-bounding Collision Probability

- Let the size of the domain \mathcal{D} be N
- Let the size of the range \mathcal{R} be M
- Suppose we have M < N

We shall prove the following theorem

Theorem (Collision Lower Bound)

Let \mathcal{H} be a hash function family such that the domain of the function is \mathcal{D} and the range of the functions is \mathcal{R} . There exists distinct $x_1^*, x_2^* \in \mathcal{D}$ such that

$$\mathbb{P}\left[h(x_1^*) = h(x_2^*) \colon h \stackrel{s}{\leftarrow} \mathcal{H}\right] \ge \frac{\frac{N}{M} - 1}{N - 1}$$

Note that for M = 2 and N = 4, the bound is 1/3. The has function family from the previous lecture achieves this bound.

Universal Hashing

Proof of the Lower-bound I

- Let us fix a hash function $h \in \mathcal{H}$
- Suppose the range is the set $\{y_1, y_2, \dots, y_M\}$
- Let n_i be the size of the set $\{x : x \in \mathcal{D}, h(x) = y_i\}$, for $i \in \{1, 2, ..., M\}$. That is, n_1 inputs maps to y_1 , n_2 inputs maps to y_2 , and so on ...
- The intuition of this is pictorially represented below

Universal Hashing

Proof of the Lower-bound II

• Let us count the number (represented by $\#col_h$) of entries $\{x_1, x_2\}$, where x_1, x_2 are distinct elements from the domain \mathcal{D} , such that $h(x_1) = h(x_2)$

Proof.

- Note that the number of distinct $\{x_1, x_2\}$ that collide at y_1 is $\binom{n_1}{2}$
- Note that the number of distinct $\{x_1, x_2\}$ that collide at y_2 is $\binom{n_2}{2}$
- And, so on ...
- Adding these entries, we get the total number of distinct $\{x_1,x_2\}$ that collide

Universal Hashing

Proof of the Lower-bound III

- Note that $n_i \ge 0$ and $\sum_{i=1}^M n_i = N$
- We are interested in lower-bounding the expression $\sum_{i=1}^{M} {n_i \choose 2}$
- Consider the following manipulation

$$\sum_{i=1}^{M} \binom{n_i}{2} = \sum_{i=1}^{M} \frac{n_i(n_i-1)}{2}$$
 $= \sum_{i=1}^{M} \frac{n_i^2 - n_i}{2}$
 $= \sum_{i=1}^{M} \frac{n_i^2}{2} - \frac{N}{2}$

(日) (四) (日) (日) (日) (日) (日)

Proof of the Lower-bound IV

- We are interested in lower-bounding $\sum_{i=1}^{M} n_i^2$ under the constraint $n_i \ge 0$ and $\sum_{i=1}^{M} n_i = N$
- So our task is to look at all the solutions to the equations: $n_i \ge 0$ (for all $i \in \{1, ..., M\}$) and $\sum_{i=1}^{M} n_i = N$. And minimize $\sum_{i=1}^{M} n_i^2$.
- For M = 2, we have the following picture for intuition. The THICK RED line is the set of all feasible solutions. The quantity $n_1^2 + n_2^2$ measures the distance of the solution from the origin. The dotted lines represent this distance for various solutions.
- Using the AM-GM inequality, one can show that the minimum is achieved when all the coordinates of the solution are equal.

・ロト ・日下 ・ヨト ・ヨト ・ クタマ

Proof of the Lower-bound V

Universal Hashing

< ロ > < 目 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof of the Lower-bound VI

• So, the solution where $n_1 = n_2 = \dots = n_M$ and $\sum_{i=1}^M n_i = N$ is (N, N, \dots, N)

$$\left(\frac{N}{M}, \frac{N}{M}, \dots, \frac{N}{M}\right)$$

• For this feasible solution, we have:

$$\sum_{i=1}^{M} n_i^2 = \sum_{i=1}^{M} (N/M)^2 = N^2/M$$

• Therefore, we get

Claim

$$\#\mathrm{col}_h \geqslant \frac{\frac{N^2}{M} - N}{2}$$

Universal Hashing

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Proof of the Lower-bound VII

Suppose H = {h₁,..., h_K}. Then, the total number (represented by #col_H) of entries {h, x₁, x₂}, where x₁, x₂ are distinct elements from the domain D, h ∈ H, and h(x₁) = h(x₂) is

Proof.

• For each *h*, we have shown earlier that $\#col_h \ge 1$

$$\left(\frac{\frac{N^2}{M}-N}{2}\right)$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

• Summing over all $h \in \mathcal{H}$, we get this result

- Let us define \mathcal{P} be the set of all distinct $\{x_1, x_2\}$ such that $x_1, x_2 \in \mathcal{D}$. Note that $|\mathcal{P}| = \binom{N}{2} = N(N-1)/2$
- Suppose we perform the following experiment:

2 Sample
$$h \stackrel{\$}{\leftarrow} \mathcal{H}$$

Output 1 if $h(x_1) = h(x_2)$; otherwise output 0

Let us denote the output of this experiment by Z.

Proof of the Lower-bound IX

• Consider the following manipulation

$$\mathbb{E}\left[Z:(x_1,x_2) \stackrel{s}{\leftarrow} \mathcal{P}, h \stackrel{s}{\leftarrow} \mathcal{H}\right] = \mathbb{P}\left[Z = 1:(x_1,x_2) \stackrel{s}{\leftarrow} \mathcal{P}, h \stackrel{s}{\leftarrow} \mathcal{H}\right]$$
$$= \frac{\# \operatorname{col}_{\mathcal{H}}}{|\mathcal{P}| \cdot |\mathcal{H}|}$$
$$\geq \frac{K\left(\frac{N^2 - N}{2}\right)}{\frac{N(N-1)}{2} \cdot K}$$
$$= \frac{\frac{N}{M} - 1}{N - 1}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof of the Lower-bound X

Claim

• So, we get the following result

$\mathbb{E}\left[Z: (x_1, x_2) \stackrel{s}{\leftarrow} \mathcal{P}, h \stackrel{s}{\leftarrow} \mathcal{H}\right] \geq \frac{\frac{N}{M} - 1}{N - 1}$

• Note that the above expression is identical to the following statement:

For
$$(x_1, x_2) \stackrel{\$}{\leftarrow} \mathcal{P}$$
, we have $\mathbb{E}\left[Z \colon h \stackrel{\$}{\leftarrow} \mathcal{H}\right] \geq \frac{\frac{N}{M} - 1}{N - 1}$

• By Pigeon-hole Principle, we get: There exists $(x_1^*, x_2^*) \in \mathcal{P}$ such that

$$\mathbb{E}\left[Z\colon h\stackrel{s}{\leftarrow}\mathcal{H}\right] \geqslant \frac{\frac{N}{M}-1}{N-1}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

• So, for this choice of x_1^* and x_2^* the collision probability is

$$\mathbb{P}\left[h(x_1^*) = h(x_2^*) \colon h \xleftarrow{s} \mathcal{H}\right] \geq \frac{\frac{N}{M} - 1}{N - 1}$$

• This completes the proof of the theorem

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

- Given domain of size N and range of size M, where M < N and M divides N
- Can we design universal hash functions such that for all distinct $x_1, x_2 \in \mathcal{D}$ we have

$$\mathbb{P}\left[h(x_1) = h(x_2) \colon h \stackrel{s}{\leftarrow} \mathcal{H}\right] = \frac{\frac{N}{M} - 1}{N - 1} = \frac{1}{M} \cdot \frac{N - M}{N - 1}$$

- This implies that we have to achieve equality at every step of the proof of the collision lower-bound theorem
 - We have to ensure $n_1 = n_2 = \cdots = n_M$
 - We have to ensure that the "average" collision probability for every (x_1, x_2) is identical
- This problem will be posed in the homework

"Better(?) than k-wise Independence"

• Note that when defining *k*-wise Independence we stated that the probability of a hash function mapping $x_1 \mapsto y_1$, $x_2 \mapsto y_2$, ..., and $x_k \mapsto y_k$ is

$$=rac{1}{\left|\mathcal{R}
ight|^k}$$

- Why did we not write $\leq \frac{1}{|\mathcal{R}|^k}$?
- Is it even possible to get $< \frac{1}{|\mathcal{R}|^k}$?
- In the homework you will prove that for any hash function family, there exists distinct x_1, \ldots, x_k and y_1, \ldots, y_k such that

$$\mathbb{P}\left[h(x_1) = y_1, \ldots, h(x_k) = y_k \colon h \stackrel{s}{\leftarrow} \mathcal{H}\right] \ge \frac{1}{|\mathcal{R}|^k}$$

• So, there is no way to get $< \frac{1}{|\mathcal{R}|^k}$. The bound $\leq \frac{1}{|\mathcal{R}|^k}$ would be equivalent to the bound $= \frac{1}{|\mathcal{R}|^k}$.

Appendix: Inequality Proof I

Suppose n_1, \ldots, n_M are positive numbers such that $n_1 + \cdots + n_M = N$. Then the following claim holds.

Proof.

- We shall use AM-GM inequality to prove this result
- AM-GM inequality states that, for non-negative *a* and *b*, the following holds.

$$\frac{a+b}{2} \geqslant \sqrt{ab}$$

Moreover, the equality holds if and only if a = b.

・ロト ・日下 ・ヨト ・ヨト ・ クタマ

Appendix: Inequality Proof II

• Consider the following manipulation of the original expression

• Rearranging, we get

$$M\sum_{i=1}^{M}n_{i}^{2} \geqslant N^{2}$$

Universal Hashing

This gives the inequality of the claim. Equality holds if and only if n_i = n_j, for all 1 ≤ i < j ≤ M. This holds if and only if n₁ = n₂ = ··· = n_M