Lecture 15: Universal Hashing: Minimizing Collisions

- k-wise Independence
- Intuition: First k inputs are answered uniformly at random
- Formally: For all distinct $x_{1}, \ldots, x_{k} \in \mathcal{D}$ and $y_{1}, \ldots, y_{k} \in \mathcal{R}$ we have

$$
\mathbb{P}\left[h\left(x_{1}\right)=y_{1}, h\left(x_{2}\right)=y_{2}, \ldots, h\left(x_{k}\right)=y_{k}: h \stackrel{\S}{\leftarrow} \mathcal{H}\right]=\frac{1}{|\mathcal{R}|^{k}}
$$

- One Construction: The set of all degree $<k$ polynomials.
- 2-wise Independence/Pairwise Independence
- Special case of $k=2$ mentioned above
- Formally: For all distinct $x_{1}, x_{2} \in \mathcal{D}$ and $y_{1}, y_{2} \in \mathcal{R}$ we have

$$
\mathbb{P}\left[h\left(x_{1}\right)=y_{1}, h\left(x_{2}\right)=y_{2}: h \stackrel{\mathcal{H}}{\leftarrow}\right]=\frac{1}{|\mathcal{R}|^{2}}
$$

- One Construction: Linear functions
- Universal Hash Function Family
- Intuition: Probability of Collision is low
- Formally: For all distinct $x_{1}, x_{2} \in \mathcal{D}$ we have

$$
\mathbb{P}\left[h\left(x_{1}\right)=h\left(x_{2}\right): h \stackrel{\mathfrak{s}}{\leftarrow} \mathcal{H}\right] \leqslant \frac{1}{|\mathcal{R}|}
$$

- Construction: Any 2-wise independent hash function family is also universal (we proved this result). The collision probability $\mathbb{P}\left[h\left(x_{1}\right)=h\left(x_{2}\right): h \stackrel{s}{s}^{\leftarrow} \mathcal{H}\right]=\frac{1}{|\mathcal{R}|}$ in this case.

Recall IV

- Constructing Better Universal Hash Function Families
- We know that if the range is larger (or same size) than the domain, then we can achieve collision probability $\mathbb{P}\left[h\left(x_{1}\right)=h\left(x_{2}\right): h{ }^{\S} \mathcal{H}\right]=0$ for every distinct $x_{1}, x_{2} \in \mathcal{D}$ (we saw that any one-one function achieves this)
- When the range is smaller than the domain, we saw that any 2-wise independent hash function family achieves collision probability $\mathbb{P}\left[h\left(x_{1}\right)=h\left(x_{2}\right): h \stackrel{\text { s }}{\leftarrow} \mathcal{H}\right]=\frac{1}{|\mathcal{R}|}$
- When the range is smaller than the domain, can we have collision probability $\mathbb{P}\left[h\left(x_{1}\right)=h\left(x_{2}\right): h \stackrel{\mathcal{H}}{\leftarrow}\right]<\frac{1}{|\mathcal{R}|}$ for all distinct $x_{1}, x_{2} \in \mathcal{D}$?
- In the previous lecture we saw that we can construct one hash function family \mathcal{H}, for $|\mathcal{D}|=4,|\mathcal{R}|=2$ such that the collision probability is $=\frac{1}{3}<\frac{1}{|\mathcal{R}|}=\frac{1}{2}$!
- Can we have even lower collision probabilities? In this lecture we shall prove that a lower collision probability is impossible!

Lower-bounding Collision Probability

- Let the size of the domain \mathcal{D} be N
- Let the size of the range \mathcal{R} be M
- Suppose we have $M<N$

We shall prove the following theorem

Theorem (Collision Lower Bound)

Let \mathcal{H} be a hash function family such that the domain of the function is \mathcal{D} and the range of the functions is \mathcal{R}. There exists distinct $x_{1}^{*}, x_{2}^{*} \in \mathcal{D}$ such that

$$
\mathbb{P}\left[h\left(x_{1}^{*}\right)=h\left(x_{2}^{*}\right): h \stackrel{s}{\leftarrow} \mathcal{H}\right] \geqslant \frac{\frac{N}{M}-1}{N-1}
$$

Note that for $M=2$ and $N=4$, the bound is $1 / 3$. The has function family from the previous lecture achieves this bound.

Proof of the Lower-bound I

- Let us fix a hash function $h \in \mathcal{H}$
- Suppose the range is the set $\left\{y_{1}, y_{2}, \ldots, y_{M}\right\}$
- Let n_{i} be the size of the set $\left\{x: x \in \mathcal{D}, h(x)=y_{i}\right\}$, for $i \in\{1,2, \ldots, M\}$. That is, n_{1} inputs maps to y_{1}, n_{2} inputs maps to y_{2}, and so on ...
- The intuition of this is pictorially represented below

Proof of the Lower-bound II

- Let us count the number (represented by $\# \mathrm{col}_{h}$) of entries $\left\{x_{1}, x_{2}\right\}$, where x_{1}, x_{2} are distinct elements from the domain \mathcal{D}, such that $h\left(x_{1}\right)=h\left(x_{2}\right)$

Claim

$$
\# \operatorname{col}_{h}=\sum_{i=1}^{M}\binom{n_{i}}{2}
$$

Proof.

- Note that the number of distinct $\left\{x_{1}, x_{2}\right\}$ that collide at y_{1} is $\binom{n_{1}}{2}$
- Note that the number of distinct $\left\{x_{1}, x_{2}\right\}$ that collide at y_{2} is $\binom{n_{2}}{2}$
- And, so on ...
- Adding these entries, we get the total number of distinct $\left\{x_{1}, x_{2}\right\}$ that collide
- Note that $n_{i} \geqslant 0$ and $\sum_{i=1}^{M} n_{i}=N$
- We are interested in lower-bounding the expression $\sum_{i=1}^{M}\binom{n_{i}}{2}$
- Consider the following manipulation

$$
\begin{aligned}
\sum_{i=1}^{M}\binom{n_{i}}{2} & =\sum_{i=1}^{M} \frac{n_{i}\left(n_{i}-1\right)}{2} \\
& =\sum_{i=1}^{M} \frac{n_{i}^{2}-n_{i}}{2} \\
& =\sum_{i=1}^{M} \frac{n_{i}^{2}}{2}-\frac{N}{2}
\end{aligned}
$$

- We are interested in lower-bounding $\sum_{i=1}^{M} n_{i}^{2}$ under the constraint $n_{i} \geqslant 0$ and $\sum_{i=1}^{M} n_{i}=N$
- So our task is to look at all the solutions to the equations: $n_{i} \geqslant 0$ (for all $i \in\{1, \ldots, M\}$) and $\sum_{i=1}^{M} n_{i}=N$. And minimize $\sum_{i=1}^{M} n_{i}^{2}$.
- For $M=2$, we have the following picture for intuition. The THICK RED line is the set of all feasible solutions. The quantity $n_{1}^{2}+n_{2}^{2}$ measures the distance of the solution from the origin. The dotted lines represent this distance for various solutions.
- Using the AM-GM inequality, one can show that the minimum is achieved when all the coordinates of the solution are equal.

Proof of the Lower-bound V

Proof of the Lower-bound VI

- So, the solution where $n_{1}=n_{2}=\cdots=n_{M}$ and $\sum_{i=1}^{M} n_{i}=N$ is

$$
\left(\frac{N}{M}, \frac{N}{M}, \ldots, \frac{N}{M}\right)
$$

- For this feasible solution, we have:

$$
\sum_{i=1}^{M} n_{i}^{2}=\sum_{i=1}^{M}(N / M)^{2}=N^{2} / M
$$

- Therefore, we get

Claim

$$
\# \operatorname{col}_{h} \geqslant \frac{\frac{N^{2}}{M}-N}{2}
$$

Proof of the Lower-bound VII

- Suppose $\mathcal{H}=\left\{h_{1}, \ldots, h_{K}\right\}$. Then, the total number (represented by $\# \mathrm{col}_{\mathcal{H}}$) of entries $\left\{h, x_{1}, x_{2}\right\}$, where x_{1}, x_{2} are distinct elements from the domain $\mathcal{D}, h \in \mathcal{H}$, and $h\left(x_{1}\right)=h\left(x_{2}\right)$ is

Claim

$$
\# \operatorname{col}_{\mathcal{H}} \geqslant K\left(\frac{\frac{N^{2}}{M}-N}{2}\right)
$$

Proof.

- For each h, we have shown earlier that $\# \operatorname{col}_{h} \geqslant\left(\frac{\frac{N^{2}}{M}-N}{2}\right)$.
- Summing over all $h \in \mathcal{H}$, we get this result

Proof of the Lower-bound VIII

- Let us define \mathcal{P} be the set of all distinct $\left\{x_{1}, x_{2}\right\}$ such that $x_{1}, x_{2} \in \mathcal{D}$. Note that $|\mathcal{P}|=\binom{N}{2}=N(N-1) / 2$
- Suppose we perform the following experiment:
(1) Sample $\left(x_{1}, x_{2}\right) \stackrel{\S}{\leftarrow} \mathcal{P}$
(2) Sample $h \stackrel{5}{\leftarrow} \mathcal{H}$
(3) Output 1 if $h\left(x_{1}\right)=h\left(x_{2}\right)$; otherwise output 0

Let us denote the output of this experiment by Z.

- Let us calculate expected outcome of Z
- Consider the following manipulation

$$
\begin{aligned}
\mathbb{E}\left[Z:\left(x_{1}, x_{2}\right) \stackrel{\mathfrak{~}}{\leftarrow}, h \stackrel{\mathfrak{H}}{\leftarrow}\right] & =\mathbb{P}\left[Z=1:\left(x_{1}, x_{2}\right) \stackrel{\mathfrak{s}}{\leftarrow} \mathcal{P}, h \leftarrow_{\leftarrow} \mathcal{H}\right] \\
& =\frac{\# \operatorname{col}_{\mathcal{H}}}{|\mathcal{P}| \cdot|\mathcal{H}|} \\
& \frac{K\left(\frac{N^{2}-N}{M}\right)}{2} \\
& \geqslant \frac{N(N-1)}{2} \cdot K \\
& =\frac{\frac{N}{M}-1}{N-1}
\end{aligned}
$$

- So, we get the following result

Claim

$$
\mathbb{E}\left[Z:\left(x_{1}, x_{2}\right) \stackrel{\varsigma}{\leftarrow} \mathcal{P}, h \stackrel{\varsigma}{\leftarrow} \mathcal{H}\right] \geqslant \frac{\frac{N}{M}-1}{N-1}
$$

- Note that the above expression is identical to the following statement:
For $\left(x_{1}, x_{2}\right) \stackrel{\S}{\leftarrow} \mathcal{P}$, we have $\mathbb{E}[Z: h \stackrel{\S}{\leftarrow} \mathcal{H}] \geqslant \frac{\frac{N}{N}-1}{N-1}$
- By Pigeon-hole Principle, we get: There exists $\left(x_{1}^{*}, x_{2}^{*}\right) \in \mathcal{P}$ such that

$$
\mathbb{E}\left[Z: h \stackrel{\S}{\lessgtr}_{\leftarrow}\right] \geqslant \frac{\frac{N}{M}-1}{N-1}
$$

- So, for this choice of x_{1}^{*} and x_{2}^{*} the collision probability is

$$
\mathbb{P}\left[h\left(x_{1}^{*}\right)=h\left(x_{2}^{*}\right): h \stackrel{\stackrel{s}{\leftarrow}}{\leftarrow}\right] \geqslant \frac{\frac{N}{M}-1}{N-1}
$$

- This completes the proof of the theorem
- Given domain of size N and range of size M, where $M<N$ and M divides N
- Can we design universal hash functions such that for all distinct $x_{1}, x_{2} \in \mathcal{D}$ we have

$$
\mathbb{P}\left[h\left(x_{1}\right)=h\left(x_{2}\right): h \stackrel{\Im}{\leftarrow} \mathcal{H}\right]=\frac{\frac{N}{M}-1}{N-1}=\frac{1}{M} \cdot \frac{N-M}{N-1}
$$

- This implies that we have to achieve equality at every step of the proof of the collision lower-bound theorem
- We have to ensure $n_{1}=n_{2}=\cdots=n_{M}$
- We have to ensure that the "average" collision probability for every $\left(x_{1}, x_{2}\right)$ is identical
- This problem will be posed in the homework

"Better(?) than k-wise Independence"

- Note that when defining k-wise Independence we stated that the probability of a hash function mapping $x_{1} \mapsto y_{1}, x_{2} \mapsto y_{2}$, \ldots, and $x_{k} \mapsto y_{k}$ is

$$
=\frac{1}{|\mathcal{R}|^{k}}
$$

- Why did we not write $\leqslant \frac{1}{|\mathcal{R}|^{k}}$?
- Is it even possible to get $<\frac{1}{|\mathcal{R}|^{k}}$?
- In the homework you will prove that for any hash function family, there exists distinct x_{1}, \ldots, x_{k} and y_{1}, \ldots, y_{k} such that

$$
\mathbb{P}\left[h\left(x_{1}\right)=y_{1}, \ldots, h\left(x_{k}\right)=y_{k}: h \stackrel{\S}{\leftarrow} \mathcal{H}\right] \geqslant \frac{1}{|\mathcal{R}|^{k}}
$$

- So, there is no way to get $<\frac{1}{|\mathcal{R}|^{k}}$. The bound $\leqslant \frac{1}{|\mathcal{R}|^{k}}$ would be equivalent to the bound $=\frac{1}{|\mathcal{R}|^{k}}$.

Appendix: Inequality Proof I

Suppose n_{1}, \ldots, n_{M} are positive numbers such that $n_{1}+\cdots+n_{M}=N$. Then the following claim holds.

Claim

$$
n_{1}^{2}+\cdots+n_{M}^{2} \geqslant N^{2} / M
$$

Proof.

- We shall use AM-GM inequality to prove this result
- AM-GM inequality states that, for non-negative a and b, the following holds.

$$
\frac{a+b}{2} \geqslant \sqrt{a b}
$$

Moreover, the equality holds if and only if $a=b$.

- Consider the following manipulation of the original expression

$$
\begin{array}{rlr}
\sum_{i=1}^{M} n_{i}^{2} & =\left(n_{1}+\cdots+n_{M}\right)^{2}-\sum_{1 \leqslant i<j \leqslant M} 2 n_{i} n_{j} & \\
& =N^{2}-\sum_{1 \leqslant i<j \leqslant M} 2 n_{i} n_{j}, & \text { Using } \sum_{i=1}^{M} n_{i}=N \\
& \geqslant N^{2}-\sum_{1 \leqslant i<j \leqslant M}\left(n_{i}^{2}+n_{j}^{2}\right), & \text { Using AM-GM } \\
& =N^{2}-(M-1) \sum_{1 \leqslant i \leqslant M} n_{i}^{2} &
\end{array}
$$

- Rearranging, we get

$$
M \sum_{i=1}^{M} n_{i}^{2} \geqslant N^{2}
$$

Appendix: Inequality Proof III

- This gives the inequality of the claim. Equality holds if and only if $n_{i}=n_{j}$, for all $1 \leqslant i<j \leqslant M$. This holds if and only if $n_{1}=n_{2}=\cdots=n_{M}$

