
Lecture 15: Universal Hashing: Minimizing
Collisions
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Recall I

k-wise Independence
Intuition: First k inputs are answered uniformly at random
Formally: For all distinct x1, . . . , xk ∈ D and y1, . . . , yk ∈ R
we have

P
[
h(x1) = y1, h(x2) = y2, . . . , h(xk) = yk : h

$←H
]
=

1

|R|k

One Construction: The set of all degree < k polynomials.
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Recall II

2-wise Independence/Pairwise Independence
Special case of k = 2 mentioned above
Formally: For all distinct x1, x2 ∈ D and y1, y2 ∈ R we have

P
[
h(x1) = y1, h(x2) = y2 : h

$←H
]
=

1

|R|2

One Construction: Linear functions
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Recall III

Universal Hash Function Family
Intuition: Probability of Collision is low
Formally: For all distinct x1, x2 ∈ D we have

P
[
h(x1) = h(x2) : h

$←H
]
6

1
|R|

Construction: Any 2-wise independent hash function family is
also universal (we proved this result). The collision probability
P
[
h(x1) = h(x2) : h

$←H
]
= 1
|R| in this case.
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Recall IV

Constructing Better Universal Hash Function Families
We know that if the range is larger (or same size) than the
domain, then we can achieve collision probability
P
[
h(x1) = h(x2) : h

$←H
]
= 0 for every distinct x1, x2 ∈ D

(we saw that any one-one function achieves this)
When the range is smaller than the domain, we saw that any
2-wise independent hash function family achieves collision
probability P

[
h(x1) = h(x2) : h

$←H
]
= 1
|R|

When the range is smaller than the domain, can we have
collision probability P

[
h(x1) = h(x2) : h

$←H
]
< 1
|R| for all

distinct x1, x2 ∈ D?
In the previous lecture we saw that we can construct one hash
function family H, for |D| = 4, |R| = 2 such that the collision
probability is = 1

3 < 1
|R| =

1
2 !

Can we have even lower collision probabilities? In this lecture
we shall prove that a lower collision probability is impossible!
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Lower-bounding Collision Probability

Let the size of the domain D be N

Let the size of the range R be M

Suppose we have M < N

We shall prove the following theorem

Theorem (Collision Lower Bound)

Let H be a hash function family such that the domain of the
function is D and the range of the functions is R. There exists
distinct x∗1 , x

∗
2 ∈ D such that

P
[
h(x∗1 ) = h(x∗2 ) : h

$←H
]
>

N
M − 1
N − 1

Note that for M = 2 and N = 4, the bound is 1/3. The has
function family from the previous lecture achieves this bound.
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Proof of the Lower-bound I

Let us fix a hash function h ∈ H
Suppose the range is the set {y1, y2, . . . , yM}
Let ni be the size of the set {x : x ∈ D, h(x) = yi}, for
i ∈ {1, 2, . . . ,M}. That is, n1 inputs maps to y1, n2 inputs
maps to y2, and so on ...
The intuition of this is pictorially represented below

n1 y1

n2 y2

...

nM yM
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Proof of the Lower-bound II

Let us count the number (represented by #colh) of entries
{x1, x2}, where x1, x2 are distinct elements from the domain
D, such that h(x1) = h(x2)

Claim

#colh =
M∑
i=1

( ni
2
)

Proof.

Note that the number of distinct {x1, x2} that collide at y1 is
(
n1
2
)

Note that the number of distinct {x1, x2} that collide at y2 is
(
n2
2
)

And, so on ...

Adding these entries, we get the total number of distinct {x1, x2}
that collide
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Proof of the Lower-bound III

Note that ni > 0 and
∑M

i=1 ni = N

We are interested in lower-bounding the expression
∑M

i=1
( ni

2
)

Consider the following manipulation

M∑
i=1

( ni
2
)
=

M∑
i=1

ni (ni − 1)
2

=
M∑
i=1

n2
i − ni
2

=
M∑
i=1

n2
i

2
− N

2
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Proof of the Lower-bound IV

We are interested in lower-bounding
∑M

i=1 n
2
i under the

constraint ni > 0 and
∑M

i=1 ni = N

So our task is to look at all the solutions to the equations:
ni > 0 (for all i ∈ {1, . . . ,M}) and

∑M
i=1 ni = N. And

minimize
∑M

i=1 n
2
i .

For M = 2, we have the following picture for intuition. The
THICK RED line is the set of all feasible solutions. The
quantity n2

1 + n2
2 measures the distance of the solution from

the origin. The dotted lines represent this distance for various
solutions.

Using the AM-GM inequality, one can show that the minimum
is achieved when all the coordinates of the solution are equal.
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Proof of the Lower-bound V

n1 −→

n
2
−→

n1 + n2 = N

⊕

⊕

⊕

⊕

⊕
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Proof of the Lower-bound VI

So, the solution where n1 = n2 = · · · = nM and
∑M

i=1 ni = N
is (

N

M
,
N

M
, . . . ,

N

M

)
For this feasible solution, we have:

M∑
i=1

n2
i =

M∑
i=1

(N/M)2 = N2/M

Therefore, we get

Claim

#colh >
N2

M − N

2
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Proof of the Lower-bound VII

Suppose H = {h1, . . . , hK}. Then, the total number
(represented by #colH) of entries {h, x1, x2}, where x1, x2 are
distinct elements from the domain D, h ∈ H, and
h(x1) = h(x2) is

Claim

#colH > K

(
N2

M − N

2

)

Proof.

For each h, we have shown earlier that #colh >

(
N2
M −N

2

)
.

Summing over all h ∈ H, we get this result
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Proof of the Lower-bound VIII

Let us define P be the set of all distinct {x1, x2} such that
x1, x2 ∈ D. Note that |P| =

(
N
2
)
= N(N − 1)/2

Suppose we perform the following experiment:

1 Sample (x1, x2)
$←P

2 Sample h
$←H

3 Output 1 if h(x1) = h(x2); otherwise output 0

Let us denote the output of this experiment by Z .

Let us calculate expected outcome of Z
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Proof of the Lower-bound IX

Consider the following manipulation

E
[
Z : (x1, x2)

$←P, h $←H
]
= P

[
Z = 1 : (x1, x2)

$←P, h $←H
]

=
#colH
|P| ·|H|

>

K

(
N2
M
−N
2

)
N(N−1)

2 · K

=
N
M − 1
N − 1
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Proof of the Lower-bound X

So, we get the following result

Claim

E
[
Z : (x1, x2)

$←P, h $←H
]
>

N
M − 1
N − 1

Note that the above expression is identical to the following
statement:
For (x1, x2)

$←P, we have E
[
Z : h

$←H
]
>

N
M
−1

N−1

By Pigeon-hole Principle, we get: There exists (x∗1 , x
∗
2 ) ∈ P

such that

E
[
Z : h

$←H
]
>

N
M − 1
N − 1
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Proof of the Lower-bound XI

So, for this choice of x∗1 and x∗2 the collision probability is

P
[
h(x∗1 ) = h(x∗2 ) : h

$←H
]
>

N
M − 1
N − 1

This completes the proof of the theorem
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“Best Universal Hash Functions”

Given domain of size N and range of size M, where M < N
and M divides N
Can we design universal hash functions such that for all
distinct x1, x2 ∈ D we have

P
[
h(x1) = h(x2) : h

$←H
]
=

N
M − 1
N − 1

=
1
M
· N −M

N − 1

This implies that we have to achieve equality at every step of
the proof of the collision lower-bound theorem

We have to ensure n1 = n2 = · · · = nM
We have to ensure that the “average” collision probability for
every (x1, x2) is identical

This problem will be posed in the homework
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“Better(?) than k-wise Independence”

Note that when defining k-wise Independence we stated that
the probability of a hash function mapping x1 7→ y1, x2 7→ y2,
. . . , and xk 7→ yk is

=
1

|R|k

Why did we not write 6 1
|R|k

?

Is it even possible to get < 1
|R|k

?

In the homework you will prove that for any hash function
family, there exists distinct x1, . . . , xk and y1, . . . , yk such that

P
[
h(x1) = y1, . . . , h(xk) = yk : h

$←H
]
>

1

|R|k

So, there is no way to get < 1
|R|k

. The bound 6 1
|R|k

would be

equivalent to the bound = 1
|R|k

.
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Appendix: Inequality Proof I

Suppose n1, . . . , nM are positive numbers such that
n1 +· · ·+ nM = N. Then the following claim holds.

Claim

n2
1 +· · ·+ n2

M > N2/M

Proof.

We shall use AM-GM inequality to prove this result

AM-GM inequality states that, for non-negative a and b, the
following holds.

a+ b

2
>
√
ab

Moreover, the equality holds if and only if a = b.
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Appendix: Inequality Proof II

Consider the following manipulation of the original expression

M∑
i=1

n2
i = (n1 +· · ·+ nM)2 −

∑
16i<j6M

2ninj

= N2 −
∑

16i<j6M

2ninj , Using
M∑
i=1

ni = N

> N2 −
∑

16i<j6M

(n2
i + n2

j ), Using AM-GM

= N2 − (M − 1)
∑

16i6M

n2
i

Rearranging, we get

M
M∑
i=1

n2
i > N2
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Appendix: Inequality Proof III

This gives the inequality of the claim. Equality holds if and
only if ni = nj , for all 1 6 i < j 6 M. This holds if and only if
n1 = n2 = · · · = nM
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