Lecture 11: Random Function

Summary

In this lecture we will learn about a few properties to expect from a Random Function

Representing Functions I

- Let $f: \mathcal{D} \rightarrow \mathcal{R}$ be a function from the domain \mathcal{D} to the range \mathcal{R}
- Suppose $\mathcal{D}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ be a domain of finite size
- And, suppose that $\mathcal{R}=\left\{y_{1}, y_{2}, \ldots, y_{M}\right\}$ be a range of finite size
- A function can be equivalently expressed as a table of entries

x_{1}	$f\left(x_{1}\right)$
x_{2}	$f\left(x_{2}\right)$
\vdots	\vdots
x_{N}	$f\left(x_{N}\right)$

Representing Functions II

- Now, this table can be expressed, equivalently, as the list

$$
\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{N}\right)\right)
$$

- So, every function f can be written as the list mentioned above
- Let $f, g: \mathcal{D} \rightarrow \mathcal{R}$ be two functions
- We say that the functions f and g are equivalent if they have identical input-output behavior, i.e., $f(x)=g(x)$, for all $x \in \mathcal{D}$

Counting Functions

- Let \mathcal{D} and \mathcal{R} be of size N and M, respectively
- To count the number of unique functions from the domain \mathcal{D} to the range \mathcal{R}, we need to count the number of distinct lists

$$
\left(y_{1}, y_{2}, \ldots, y_{N}\right)
$$

where each $y_{i} \in \mathcal{R}$

- Note that there are M possibilities of choosing y_{1}
- Conditioned on choosing y_{1}, there are M possibilities of choosing y_{2}
- Conditioned on choosing y_{1} and y_{2}, there are M possibilities of choosing yz
- And so on ...
- So, we have the following result

Claim (Number of Functions)

There are a total of M^{N} distinct functions with domain-size N and range-size M

Example

- Suppose $\mathcal{D}=\{0,1,2\}$ and $\mathcal{R}=\{0,1\}$
- The list $(1,0,1)$ corresponds to the function f such that $f(0)=1, f(1)=0$, and $f(2)=1$
- There are $2^{3}=8$ different functions
- The eight functions correspond to the lists $(0,0,0),(0,0,1)$, $(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0)$, and $(1,1,1)$

Random Function

- We have seen that there are a total of M^{N} distinct functions with domain-size N and range-size M
- Let us represent the set of all these functions

$$
\mathcal{F}_{N, M}:=\left\{F_{1}, F_{2}, \ldots, F_{M^{N}}\right\}
$$

Definition (Random Function)

A function f chosen uniformly at random from the set $\mathcal{F}_{N, M}$ is referred to as the random function

- We represent this as $f \stackrel{\Phi}{\leftarrow} \mathcal{F}_{N, M}$
- Once $f \stackrel{\mathfrak{s}}{\leftarrow} \mathcal{F}_{N, M}$ has been sampled it always has the same value y as the value of $f(x)$
- So, this is what a random function does not do. Every time you query the random function at the same x it provides a random answer.
- Suppose we sample $f \stackrel{\S}{\leftarrow} \mathcal{F}_{N, M}$
- For any input x_{1}, the output $f\left(x_{1}\right)$ is distributed uniformly at random over the range \mathcal{R}. That is, for any $x_{1} \in \mathcal{D}$ and any $y_{1} \in \mathcal{R}$, we have:

$$
\mathbb{P}_{f \stackrel{\mathfrak{s}}{\leftarrow} \mathcal{F}_{N, M}}\left[f\left(x_{1}\right)=y_{1}\right]=\frac{1}{M}
$$

- Conditioned on the answer x_{1} and $f\left(x_{1}\right)=y_{1}$, for any (different) input x_{2}, the output $f\left(x_{2}\right)$ is distributed uniformly at random over the range \mathcal{R}. That is, for any distinct $x_{1}, x_{2} \in \mathcal{D}$ and any $y_{1}, y_{2} \in \mathcal{R}$, we have:

$$
\mathbb{P}_{f \leftarrow \mathcal{F}_{N, M}}\left[f\left(x_{2}\right)=y_{2} \mid f\left(x_{1}\right)=y_{1}\right]=\frac{1}{M}
$$

Property: Unpredictability II

- So, in general, for $1 \leqslant k \leqslant N$, any distinct $x_{1}, x_{2}, \ldots, x_{k} \in \mathcal{D}$ and any $y_{1}, y_{2}, \ldots, y_{k} \in \mathcal{R}$, we have:

$$
\mathbb{P}_{f \uparrow \mathcal{F}_{N, M}}\left[f\left(x_{k}\right)=y_{k} \mid f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}, \ldots, f\left(x_{k-1}\right)=y_{k-1}\right]=\frac{1}{M}
$$

Bounded Unpredictability

- Note that a random function has the property that all distinct inputs (up to N) are answered independently and uniformly at random
- Suppose we need this requirement only for the first 5 inputs
- Suppose $\mathcal{D}=\mathcal{R}$ be a field \mathbb{F}
- Exercise: Think how the set of polynomials with coefficients in \mathbb{F} and of degree $<t$ ensures t-bounded unpredictability
- Exercise: Suppose Alice and Bob want to perform private-key encryption for t messages. How to use t-bounded unpredictability to design a secure private-key encryption scheme for t messages.

