
Lecture 10: Birthday Paradox
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Problem Statement

Let S be a set of size n

Suppose (X1,X2, . . . ,Xn) are identical and independent
distributions, such that Xi is the uniform distribution over the
set S
We say that a Collision has happened if there exists i 6= j such
that Xi = Xj

We want to understand the probability

P [Collision]

as a function of k and n
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Example: Birthday Problem

Assume that the birthdays of people are uniformly distributed
over 365 days
Given a sample of k randomly chosen people, what is the
probability that two people share the same birthday?
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Example: Hash Function Collision

Let f : D → R be a function from the domain D and range R

Assume that if x ∈ D is picked uniformly at random from D,
then f (x) is uniformly at random in R

How many samples {x1, . . . , xk} should you obtain before
discovering a collision of f ?
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Summary of the Result

We shall explore the asymptotic behavior of P [Collision] as
n→∞
We shall show that if k 6 c1

√
n then P [Collision] 6 0.1, for a

suitable constant c1
We shall also show that if k > c2

√
n then P [Collision] > 0.9,

for a suitable constant c2
Intuitively, sampling only (roughly)

√
n samples, the

P [Collision] suddenly transitions from 0.1 to 0.9!
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Inequalities

We shall use the following inequalities without proof

exp

(
−x − 3

4
x2
)
61− x 6 exp (−x) 6 1− x + x2/2

The red inequality holds for x ∈ [0, c], where c is a suitable
constant in the range (0, 1)
The remaining inequalities hold for all x ∈ [0, 1]
These inequalities can be proven using The Remainder
Theorem for Taylor Expansion of Functions
It is recommended to plot these functions and verify the
inequalities
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Calculating the probability Expression I

It will be easy to calculate P [NoCollision]

Note that P [NoCollision] = P
[
∀i 6= j : Xi 6= Xj

]
This is identical to the probability that all the following events
hold simultaneously

X2 6= X1 (call this event E2)
X3 6= X1 and X3 6= X2 (call this event E3)
X4 6= X1, X4 6= X2, and X4 6= X3 (call this event E4)
and so on . . .
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Calculating the probability Expression II

So, we are interested in computing

P [E2,E3,E4, . . . ,Ek ]

By Chain Rule, this expression is identical to

P [E2] · P
[
E3|E2

]
· P
[
E4|E2,E3

]
· · ·P

[
Ek |E2,E3, . . . ,Ek−1

]
Note that P [E2] = (n − 1)/n (because X2 can take any value
other than the value taken by X1)

Note that P
[
E3|E2

]
= (n − 2)/n (because the event E2

implies that X1 and X2 have distinct values, and X3 needs to
avoid the two values taken by X1 and X2)

Similarly, we have P
[
E4|E2,E3

]
= (n− 3)/n(because the event

E2 and E3 imply that X1, X2, and X3 have distinct values, and
X4 needs to avoid the three values taken by X1, X2, and X3)
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Calculating the probability Expression III

Extending this logic, for all i ∈ {2, . . . , k}, we can conclude
that

P
[
Ei |E2,E3, . . . ,Ei−1

]
=

n − (i − 1)
n

= 1− i − 1
n

Now, we can calculate

Final Result

P [NoCollision] = P [E2,E3, . . . ,Ek ]

=

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− k − 1
n

)
=

k−1∏
i=1

(
1− i

n

)
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Upper-bounding the probability of No Collision

k−1∏
i=1

(
1 − i

n

)
6

k−1∏
i=1

exp

(
− i

n

)
, Using 1 − x 6 exp(−x)

= exp

−
k−1∑
i=1

i

n


= exp

(
− (k − 1)k

2n

)
6 1 − (k − 1)k

2n
+

(k − 1)2k2

8n2 , Using exp(−x) 6 1 − x + x2/2
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Lower-bounding the probability of No Collision

k−1∏
i=1

(
1 − i

n

)
>

k−1∏
i=1

exp

(
− i

n
− 3i2

4n2

)
, Using 1 − x > exp(−x − 3x2/4)

We can use this inequality

because we shall only use k = o(n)

= exp

−
k−1∑
i=1

i

n
+

3i2

4n2


= exp

(
− (k − 1)k

2n
− (k − 1)(k − 1/2)k

4n2

)
> 1 − (k − 1)k

2n
− (k − 1)(k − 1/2)k

4n2 , Using exp(−x) > 1 − x
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Summary of the Bounds

1− (k − 1)k
2n

+
(k − 1)2k2

8n2 > P [NoCollision] > 1− (k − 1)k
2n

− (k − 1)(k − 1/2)k

4n2

Or, equivalently

(k − 1)k
2n

− (k − 1)2k2

8n2 6 P [Collision] 6
(k − 1)k

2n
+

(k − 1)(k − 1/2)k

4n2

So, we can choose k = c1
√
n such that P [Collision] 6 0.1 and

we can choose k = c2
√
n such that P [Collision] > 0.9

Plot and verify these bounds
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Improving the Upper-bound

Recommended Exercise: Use the fact that
1− x 6 exp

(
−x − x2/2

)
to obtain a better upper bound
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