Lecture 10: Birthday Paradox

- Let S be a set of size n
- Suppose $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ are identical and independent distributions, such that X_{i} is the uniform distribution over the set S
- We say that a Collision has happened if there exists $i \neq j$ such that $X_{i}=X_{j}$
- We want to understand the probability
\mathbb{P} [Collision]
as a function of k and n

Example: Birthday Problem

- Assume that the birthdays of people are uniformly distributed over 365 days
- Given a sample of k randomly chosen people, what is the probability that two people share the same birthday?

Example: Hash Function Collision

- Let $f: D \rightarrow R$ be a function from the domain D and range R
- Assume that if $x \in D$ is picked uniformly at random from D, then $f(x)$ is uniformly at random in R
- How many samples $\left\{x_{1}, \ldots, x_{k}\right\}$ should you obtain before discovering a collision of f ?
- We shall explore the asymptotic behavior of \mathbb{P} [Collision] as $n \rightarrow \infty$
- We shall show that if $k \leqslant c_{1} \sqrt{n}$ then $\mathbb{P}[$ Collision $] \leqslant 0.1$, for a suitable constant c_{1}
- We shall also show that if $k \geqslant c_{2} \sqrt{n}$ then $\mathbb{P}[$ Collision $] \geqslant 0.9$, for a suitable constant c_{2}
- Intuitively, sampling only (roughly) \sqrt{n} samples, the \mathbb{P} [Collision] suddenly transitions from 0.1 to 0.9 !

Inequalities

- We shall use the following inequalities without proof

$$
\exp \left(-x-\frac{3}{4} x^{2}\right) \leqslant 1-x \leqslant \exp (-x) \leqslant 1-x+x^{2} / 2
$$

- The red inequality holds for $x \in[0, c]$, where c is a suitable constant in the range $(0,1)$
- The remaining inequalities hold for all $x \in[0,1]$
- These inequalities can be proven using The Remainder Theorem for Taylor Expansion of Functions
- It is recommended to plot these functions and verify the inequalities

Calculating the probability Expression I

- It will be easy to calculate \mathbb{P} [NoCollision $]$
- Note that $\mathbb{P}[$ NoCollision $]=\mathbb{P}\left[\forall i \neq j: X_{i} \neq X_{j}\right]$
- This is identical to the probability that all the following events hold simultaneously
- $X_{2} \neq X_{1}$ (call this event E_{2})
- $X_{3} \neq X_{1}$ and $X_{3} \neq X_{2}$ (call this event E_{3})
- $X_{4} \neq X_{1}, X_{4} \neq X_{2}$, and $X_{4} \neq X_{3}$ (call this event E_{4})
- and so on ...

Calculating the probability Expression II

- So, we are interested in computing

$$
\mathbb{P}\left[E_{2}, E_{3}, E_{4}, \ldots, E_{k}\right]
$$

- By Chain Rule, this expression is identical to

$$
\mathbb{P}\left[E_{2}\right] \cdot \mathbb{P}\left[E_{3} \mid E_{2}\right] \cdot \mathbb{P}\left[E_{4} \mid E_{2}, E_{3}\right] \cdots \mathbb{P}\left[E_{k} \mid E_{2}, E_{3}, \ldots, E_{k-1}\right]
$$

- Note that $\mathbb{P}\left[E_{2}\right]=(n-1) / n$ (because X_{2} can take any value other than the value taken by X_{1})
- Note that $\mathbb{P}\left[E_{3} \mid E_{2}\right]=(n-2) / n$ (because the event E_{2} implies that X_{1} and X_{2} have distinct values, and X_{3} needs to avoid the two values taken by X_{1} and X_{2})
- Similarly, we have $\mathbb{P}\left[E_{4} \mid E_{2}, E_{3}\right]=(n-3) / n$ (because the event E_{2} and E_{3} imply that X_{1}, X_{2}, and X_{3} have distinct values, and X_{4} needs to avoid the three values taken by X_{1}, X_{2}, and X_{3})

Calculating the probability Expression III

- Extending this logic, for all $i \in\{2, \ldots, k\}$, we can conclude that

$$
\mathbb{P}\left[E_{i} \mid E_{2}, E_{3}, \ldots, E_{i-1}\right]=\frac{n-(i-1)}{n}=1-\frac{i-1}{n}
$$

- Now, we can calculate

Final Result

$$
\begin{aligned}
\mathbb{P}[\text { NoCollision }] & =\mathbb{P}\left[E_{2}, E_{3}, \ldots, E_{k}\right] \\
& =\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k-1}{n}\right) \\
& =\prod_{i=1}^{k-1}\left(1-\frac{i}{n}\right)
\end{aligned}
$$

Upper-bounding the probability of No Collision

$$
\begin{aligned}
\prod_{i=1}^{k-1}\left(1-\frac{i}{n}\right) & \leqslant \prod_{i=1}^{k-1} \exp \left(-\frac{i}{n}\right), \quad \text { Using } 1-x \leqslant \exp (-x) \\
& =\exp \left(-\sum_{i=1}^{k-1} \frac{i}{n}\right) \\
& =\exp \left(-\frac{(k-1) k}{2 n}\right) \\
& \leqslant 1-\frac{(k-1) k}{2 n}+\frac{(k-1)^{2} k^{2}}{8 n^{2}}, \quad U \operatorname{sing} \exp (-x) \leqslant 1-x+x^{2} / 2
\end{aligned}
$$

Lower-bounding the probability of No Collision

$$
\prod_{n=1}^{n-1}\left(1-\frac{i}{n}\right) \geq \prod_{n=1}^{n-1} \exp \left(-\frac{i}{n}-\frac{3 i^{2}}{4 n^{2}}\right),
$$

$$
\text { Using } 1-x \geqslant \exp \left(-x-3 x^{2} / 4\right)
$$

We can use this inequality
because we shall only use $k=o(n)$

$$
\begin{aligned}
& =\exp \left(-\sum_{i=1}^{k-1} \frac{i}{n}+\frac{3 i^{2}}{4 n^{2}}\right) \\
& =\exp \left(-\frac{(k-1) k}{2 n}-\frac{(k-1)(k-1 / 2) k}{4 n^{2}}\right) \\
& \geqslant 1-\frac{(k-1) k}{2 n}-\frac{(k-1)(k-1 / 2) k}{4 n^{2}}
\end{aligned}
$$

$$
\text { Using } \exp (-x) \geqslant 1-x
$$

$1-\frac{(k-1) k}{2 n}+\frac{(k-1)^{2} k^{2}}{8 n^{2}} \geqslant \mathbb{P}[$ NoCollision $] \geqslant 1-\frac{(k-1) k}{2 n}-\frac{(k-1)(k-1 / 2) k}{4 n^{2}}$

Or, equivalently

$$
\frac{(k-1) k}{2 n}-\frac{(k-1)^{2} k^{2}}{8 n^{2}} \leqslant \mathbb{P}[\text { Collision }] \leqslant \frac{(k-1) k}{2 n}+\frac{(k-1)(k-1 / 2) k}{4 n^{2}}
$$

- So, we can choose $k=c_{1} \sqrt{n}$ such that $\mathbb{P}[$ Collision $] \leqslant 0.1$ and we can choose $k=c_{2} \sqrt{n}$ such that $\mathbb{P}[$ Collision $] \geqslant 0.9$
- Plot and verify these bounds

Improving the Upper-bound

- Recommended Exercise: Use the fact that $1-x \leqslant \exp \left(-x-x^{2} / 2\right)$ to obtain a better upper bound

