Lecture 09: Optimality of One-time Pad \&
Limitations

Overview

- Optimality. In today's lecture we shall see that one-time pad is essentially optimal (in what exact sense, we shall describe shortly)
- Limitation. We shall also characterize the exact knowledge that is leaked if one-time pad is used to encrypt two messages

Class of Private-key Encryption Algorithm

For simplicity of proof and clarity of the intuition, we shall consider the class of all private-key encryption algorithms with the following restrictions
(1) The key-generation algorithm Gen() outputs a secret key sampled uniformly at random from the set \mathcal{K}
(2) The encryption algorithm $\mathrm{Enc}_{\text {sk }}(m)$ is deterministic

Figure: Restrictions on Private-key Encryption.

Graph of a Private-key Encryption

Suppose (Gen, Enc, Dec) is a private-key encryption scheme that satisfies the two restrictions in Figure 1. We construct the following bipartite graph

- The left partite set is the set of all message \mathcal{M}
- The right partite set is the set of all cipher-texts \mathcal{C}
- Given a message $m \in \mathcal{M}$ and a cipher-text $c \in \mathcal{C}$, we add an edge (m, c) labeled $s k$, if we have $c=\operatorname{Enc}_{\text {sk }}(m)$
This is the graph corresponding to the encryption scheme (Gen, Enc, Dec)

Characterizing Correctness in the Graph Representation

Claim

Given distinct $m, m^{\prime} \in \mathcal{M}$ and $c \in \mathcal{C}$ the following cannot happen.
There exists an $s k \in \mathcal{K}$ such that (m, c) and $\left(m^{\prime}, c\right)$ are both labeled sk.

Proof.

- Suppose distinct m, m^{\prime} and c such that $E n c_{\text {sk }}(m)=\operatorname{Enc}_{\text {sk }}\left(m^{\prime}\right)=c$.
- Consider Bob's view
- Bob knows sk and c.
- So, Bob cannot distinguish the case when " c is the encryption of m using sk" from the case when " c is the encryption of m^{\prime} using sk"
- So, the scheme is not correct

Characterizing Security in the Graph Representation I

Claim

For every cipher text c, there exists $i \in\{0,1,2, \ldots\}$ such that it receives exactly i edges from every message $m \in \mathcal{M}$

Proof Outline.

- Consider any cipher text $c \in \mathcal{C}$
- By security, the following quantity is $\mathbb{P}[M=m]$ for all $m \in \mathcal{M}$

$$
\begin{aligned}
\mathbb{P}[M=m \mid C=c] & =\frac{\mathbb{P}[M=m, C=c]}{\mathbb{P}[C=c]} \\
& =\mathbb{P}[M=m] \frac{\mathbb{P}[C=c \mid M=m]}{\mathbb{P}[C=c]}
\end{aligned}
$$

- This implies that $\mathbb{P}[C=c \mid M=m]$ is identical to $\mathbb{P}[C=c]$ for all m

Characterizing Security in the Graph Representation II

- Note that

$$
\mathbb{P}[C=c]=\sum_{m^{\prime} \in \mathcal{M}} \mathbb{P}\left[C=c \mid M=m^{\prime}\right] \cdot \mathbb{P}\left[M=m^{\prime}\right]
$$

- Therefore, we can interpret the quantity $\mathbb{P}[C=c]$ as an average of all the entries in the set

$$
\begin{aligned}
& A=\left\{\mathbb{P}\left[C=c \mid M=m^{\prime}\right], \text { for } m^{\prime} \in \mathcal{M}\right\}, \text { where the entry } \\
& \mathbb{P}\left[C=c \mid M=m^{\prime}\right] \text { has weight } \mathbb{P}\left[M=m^{\prime}\right]
\end{aligned}
$$

- Security states that the "average" is identical to all the elements in the set A
- So, all the elements in the set A are identical
- Note that $\mathbb{P}[C=c \mid M=m]=n_{m, c} /|\mathcal{K}|$, where $n_{m, c}$ is the number of edges between the message m and cipher text c
- Therefore, for a fixed cipher-text c we have $n_{m, c}=n_{m^{\prime}, c}$, for $m, m^{\prime} \in \mathcal{M}$

Summary

Figure: Correctness rules out this case.

Figure: Security rules out this case.

Theorem

Let (Gen, Enc, Dec) be a private-key encryption scheme that satisfies the restrictions in Figure 1. If this scheme is correct and secure, then $|\mathcal{K}| \geqslant|\mathcal{M}|$.

Shannon's Theorem II

Proof

- If possible let (Gen, Enc, Dec) be a secure private-key encryption scheme that satisfies the constraints in Figure 1 such that $|\mathcal{K}|<|\mathcal{M}|$
- Consider the graph of this private-key encryption scheme
- There are $|\mathcal{K}|$ edges incident on each message $m \in \mathcal{M}$
- There are a total of $|\mathcal{M}|$ messages in the left set
- The total number of edges, therefore, is $|\mathcal{M}| \cdot|\mathcal{K}|$
- Security implies that every cipher text receives equal edges from each message. So, the number of edges incident on any cipher text is 0 , or $|\mathcal{M}|$, or $2|\mathcal{M}|$, or ...
- Since there are $|\mathcal{M}| \cdot|\mathcal{K}|>0$ edges in total, there is one cipher text c that receives $|\mathcal{M}|$, or $2|\mathcal{M}|$, or $3|\mathcal{M}|, \ldots$ edges.
- Now, the cipher text c receives edges from every message in \mathcal{M}. But there are only $|\mathcal{K}|<|\mathcal{M}|$ distinct labels.
- So, using the pigeon-hole principle, the cipher text c is connected to two distinct messages using the same secret key
- Therefore, this scheme is not correct!

Comments on the Graph Notation

- Every private-key encryption scheme can be represented using the graph representation
- The canonical key generation algorithm, outputs a random sk $\stackrel{\S}{\leftarrow} \mathcal{K}$
- The canonical encryption of m using the secret-key sk is the cipher-text c such that (m, c) is labeled sk
- The canonical decryption of a cipher-text c using the secret-key sk is the message m such that (m, c) is labeled sk
- The canonical encryption and decryption algorithms exist but need not be efficient

One-time Pad is Optimal

- Let (G, \circ) be a group
- Correctness Condition. There does not exist $m \neq m^{\prime}$ and $s k$ such that $m \circ s k=m^{\prime} \circ s k$ (you proved this in HW0)
- Security Condition. There does not exists m, sk $\neq \mathrm{sk}^{\prime}$ such that $m \circ s k=m \circ \mathrm{sk}^{\prime}$ (you will prove this in HW2)
- And we have $|\mathcal{K}|=|\mathcal{M}|$ (Inequality is Tight!)

Limitations I

- As the name suggests, you cannot send two messages using the same secret-key
- Suppose Alice computes $c_{1}=m_{1} \circ$ sk and $c_{2}=m_{2} \circ$ sk and sends $\left(c_{1}, c_{2}\right)$ to Bob
- Obviously Bob can decrypt both the cipher-texts using the secret-key sk
- However the security is lost
(1) Suppose the adversary thinks that the first cipher-text is an encryption of the message $\widetilde{m_{1}}$
(2) Then the secret-key that explains this pair of message and cipher-text is $\widetilde{s k}=\operatorname{inv}\left(\widetilde{m_{1}}\right) \circ c_{1}$
(3) This implies that the second cipher-text encrypts the message $\widetilde{m_{2}}=c_{2} \circ \operatorname{inv}\left(c_{1}\right) \circ \widetilde{m_{1}}$
- That is, conditioned on the first message, the second message is fixed (In a secure two-message encryption scheme, we expect that the second message is independently distribution even conditioned on the first message)

An Example:

- Consider the $\left(\mathbb{Z}_{26},+\right)$ group
- Suppose we encrypt $c_{1}=m_{1}+$ sk and $c_{2}=m_{2}+$ sk
- Seeing the cipher-texts $\left(c_{1}, c_{2}\right)$, the adversary knows that the two messages are on the form $\left(\widetilde{m_{1}}, c_{2}-c_{1}+\widetilde{m_{1}}\right)$
- The second message is fixed conditioned on $\widetilde{m_{1}}$

Limitations IV

Another Example

- Consider the $\left(\mathbb{Z}_{2}^{n},+\right)$ group (here " + " is the coordinate-wise addition modulo 2)
- Here $c_{1}-c_{2}$ determines which bits of m_{1} and m_{2} are identical/different

Limitations V

Horrible Encryption

- Suppose someone picks sk ${ }_{\leftarrow}^{\leftarrow} \mathbb{Z}_{26}$
- And encrypts an entire well-formed english sentence $m_{1} m_{2} \ldots m_{n}$ as $\left(m_{1}+s k\right)\left(m_{2}+s k\right) \ldots\left(m_{n}+s k\right)$
- Given this cipher-text an adversary can compute the frequency-list of alphabets in the cipher-text to guess the sk such that the frequency-list matches the one for well-formed English sentences

Additional Reading

- Additional Reading: Caesar cipher, Cryptanalysis of Caesar cipher, Vigenère Cipher, Kasiski Method, Index of coincidence
- Suppose we are working with the group $\left(\mathbb{Z}_{26},+\right)$
- Suppose the adversary sees two cipher-texts $c_{1}=m_{1}+$ sk and $c_{2}=m_{2}+\mathrm{sk}$
- We want to claim that the adversary learns only $\left(m_{1}-m_{2}\right)$!
- The adversary can, at least, compute $\left(m_{1}-m_{2}\right)$
- But, how to argue that it learns only $\left(m_{1}-m_{2}\right)$?

Simulation Argument: Advanced Reading III

- We proceed by using a Simulation Argument
- Suppose we want to state that the adversary learns only "-blah-"
- Then, we construct a polynomial-time algorithm, called the simulator, that takes as input "-blah-" and its outputs has the same distribution as the adversary's view
- For example, in this case "-blah-" is " $\Delta=\left(m_{1}-m_{2}\right)$," and the simulator needs to output the view of the adversary $\left(C_{1}, C_{2}\right)$
- Consider the algorithm below
$\operatorname{Sim}(\Delta)$:
(1) Sample $x \leftarrow_{\leftarrow}^{\&} G$
(2) Output $(x, x-\Delta)$
- The distribution of the output of this algorithm is identical to the distribution of $\left(C_{1}, C_{2}\right)$

