
Lecture 09: Optimality of One-time Pad &
Limitations
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Overview

Optimality. In today’s lecture we shall see that one-time pad
is essentially optimal (in what exact sense, we shall describe
shortly)
Limitation. We shall also characterize the exact knowledge
that is leaked if one-time pad is used to encrypt two messages
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Class of Private-key Encryption Algorithm

For simplicity of proof and clarity of the intuition, we shall consider
the class of all private-key encryption algorithms with the following
restrictions

1 The key-generation algorithm Gen() outputs a secret key
sampled uniformly at random from the set K

2 The encryption algorithm Encsk(m) is deterministic

Figure: Restrictions on Private-key Encryption.
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Graph of a Private-key Encryption

Suppose (Gen,Enc,Dec) is a private-key encryption scheme that
satisfies the two restrictions in Figure 1. We construct the following
bipartite graph

The left partite set is the set of all messageM
The right partite set is the set of all cipher-texts C
Given a message m ∈M and a cipher-text c ∈ C, we add an
edge (m, c) labeled sk, if we have c = Encsk(m)

This is the graph corresponding to the encryption scheme
(Gen,Enc,Dec)
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Characterizing Correctness in the Graph Representation

Claim
Given distinct m,m′ ∈M and c ∈ C the following cannot happen.

There exists an sk ∈ K such that (m, c) and (m′, c) are both
labeled sk.

Proof.
Suppose distinct m,m′ and c such that
Encsk(m) = Encsk(m′) = c .
Consider Bob’s view
Bob knows sk and c .
So, Bob cannot distinguish the case when “c is the encryption
of m using sk” from the case when “c is the encryption of m′

using sk”
So, the scheme is not correct
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Characterizing Security in the Graph Representation I

Claim
For every cipher text c , there exists i ∈ {0, 1, 2, . . . } such that it
receives exactly i edges from every message m ∈M

Proof Outline.
Consider any cipher text c ∈ C
By security, the following quantity is P [M = m] for all m ∈M

P
[
M = m|C = c

]
=

P [M = m,C = c]

P [C = c]

= P [M = m]
P
[
C = c |M = m

]
P [C = c]

This implies that P
[
C = c |M = m

]
is identical to P [C = c]

for all m
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Characterizing Security in the Graph Representation II

Note that
P [C = c] =

∑
m′∈M P

[
C = c |M = m′] · P [M = m′]

Therefore, we can interpret the quantity P [C = c] as an
average of all the entries in the set
A =

{
P
[
C = c |M = m′] , for m′ ∈M

}
, where the entry

P
[
C = c |M = m′] has weight P [M = m′]

Security states that the “average” is identical to all the
elements in the set A

So, all the elements in the set A are identical

Note that P
[
C = c |M = m

]
= nm,c/|K|, where nm,c is the

number of edges between the message m and cipher text c

Therefore, for a fixed cipher-text c we have nm,c = nm′,c , for
m,m′ ∈M
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Summary
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Figure: Correctness rules out this case.

m

m′

c
sk

sk′

sk′′

Figure: Security rules out this case.
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Shannon’s Theorem I

Theorem
Let (Gen,Enc,Dec) be a private-key encryption scheme that
satisfies the restrictions in Figure 1. If this scheme is correct and
secure, then |K| > |M|.
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Shannon’s Theorem II

Proof
If possible let (Gen,Enc,Dec) be a secure private-key
encryption scheme that satisfies the constraints in Figure 1
such that |K| < |M|
Consider the graph of this private-key encryption scheme
There are |K| edges incident on each message m ∈M
There are a total of |M| messages in the left set
The total number of edges, therefore, is |M| ·|K|
Security implies that every cipher text receives equal edges
from each message. So, the number of edges incident on any
cipher text is 0, or |M| , or 2|M|, or . . .
Since there are |M| ·|K| > 0 edges in total, there is one cipher
text c that receives |M| , or 2|M|, or 3|M|, . . . edges.
Now, the cipher text c receives edges from every message in
M. But there are only |K| < |M| distinct labels.
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Shannon’s Theorem III

So, using the pigeon-hole principle, the cipher text c is
connected to two distinct messages using the same secret key

Therefore, this scheme is not correct!
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Comments on the Graph Notation

Every private-key encryption scheme can be represented using
the graph representation
The canonical key generation algorithm, outputs a random
sk $←K
The canonical encryption of m using the secret-key sk is the
cipher-text c such that (m, c) is labeled sk
The canonical decryption of a cipher-text c using the
secret-key sk is the message m such that (m, c) is labeled sk
The canonical encryption and decryption algorithms exist but
need not be efficient
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One-time Pad is Optimal

Let (G , ◦) be a group
Correctness Condition. There does not exist m 6= m′ and sk
such that m ◦ sk = m′ ◦ sk (you proved this in HW0)
Security Condition. There does not exists m, sk 6= sk′ such
that m ◦ sk = m ◦ sk′ (you will prove this in HW2)
And we have |K| = |M| (Inequality is Tight!)
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Limitations I

As the name suggests, you cannot send two messages using
the same secret-key

Suppose Alice computes c1 = m1 ◦ sk and c2 = m2 ◦ sk and
sends (c1, c2) to Bob

Obviously Bob can decrypt both the cipher-texts using the
secret-key sk

However the security is lost

1 Suppose the adversary thinks that the first cipher-text is an
encryption of the message m̃1

2 Then the secret-key that explains this pair of message and
cipher-text is s̃k = inv(m̃1) ◦ c1

3 This implies that the second cipher-text encrypts the
message m̃2 = c2 ◦ inv(c1) ◦ m̃1
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Limitations II

That is, conditioned on the first message, the second message
is fixed (In a secure two-message encryption scheme, we
expect that the second message is independently distribution
even conditioned on the first message)
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Limitations III

An Example:

Consider the (Z26,+) group

Suppose we encrypt c1 = m1 + sk and c2 = m2 + sk

Seeing the cipher-texts (c1, c2), the adversary knows that the
two messages are on the form (m̃1, c2 − c1 + m̃1)

The second message is fixed conditioned on m̃1
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Limitations IV

Another Example

Consider the (Zn
2,+) group (here “+” is the coordinate-wise

addition modulo 2)

Here c1 − c2 determines which bits of m1 and m2 are
identical/different
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Limitations V

Horrible Encryption

Suppose someone picks sk $← Z26

And encrypts an entire well-formed english sentence
m1m2 . . .mn as (m1 + sk)(m2 + sk) . . . (mn + sk)

Given this cipher-text an adversary can compute the
frequency-list of alphabets in the cipher-text to guess the sk
such that the frequency-list matches the one for well-formed
English sentences
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Additional Reading

Additional Reading: Caesar cipher, Cryptanalysis of Caesar
cipher, Vigenère Cipher, Kasiski Method, Index of coincidence
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Simulation Argument: Advanced Reading I

Suppose we are working with the group (Z26,+)

Suppose the adversary sees two cipher-texts c1 = m1 + sk and
c2 = m2 + sk

We want to claim that the adversary learns only (m1 −m2)!
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Simulation Argument: Advanced Reading II

The adversary can, at least, compute (m1 −m2)

But, how to argue that it learns only (m1 −m2)?
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Simulation Argument: Advanced Reading III

We proceed by using a Simulation Argument

Suppose we want to state that the adversary learns only
“–blah–”

Then, we construct a polynomial-time algorithm, called the
simulator, that takes as input “–blah–” and its outputs has the
same distribution as the adversary’s view

For example, in this case “–blah–” is “∆ = (m1−m2),” and the
simulator needs to output the view of the adversary (C1,C2)
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Simulation Argument: Advanced Reading IV

Consider the algorithm below

Sim(∆) :

1 Sample x
$← G

2 Output (x , x −∆)

The distribution of the output of this algorithm is identical to
the distribution of (C1,C2)
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