


Overview

o Optimality. In today's lecture we shall see that one-time pad
is essentially optimal (in what exact sense, we shall describe
shortly)

e Limitation. We shall also characterize the exact knowledge
that is leaked if one-time pad is used to encrypt two messages
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Class of Private-key Encryption Algorithm

For simplicity of proof and clarity of the intuition, we shall consider
the class of all private-key encryption algorithms with the following
restrictions

© The key-generation algorithm Gen() outputs a secret key
sampled uniformly at random from the set

@ The encryption algorithm Encg(m) is deterministic

Figure: Restrictions on Private-key Encryption.
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Graph of a Private-key Encryption

Suppose (Gen, Enc, Dec) is a private-key encryption scheme that
satisfies the two restrictions in Figure 1. We construct the following
bipartite graph

@ The left partite set is the set of all message M

@ The right partite set is the set of all cipher-texts C

@ Given a message m € M and a cipher-text ¢ € C, we add an
edge (m, c) labeled sk, if we have ¢ = Encg(m)

This is the graph corresponding to the encryption scheme
(Gen, Enc, Dec)
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Characterizing Correctness in the Graph Representation

Given distinct m,m’ € M and c € C the following cannot happen.

There exists an sk € K such that (m, c) and (m', ¢) are both
labeled sk.

@ Suppose distinct m, m’" and ¢ such that
Encek(m) = Encg(m’) = c.

@ Consider Bob's view
@ Bob knows sk and c.

@ So, Bob cannot distinguish the case when “c is the encryption
of m using sk from the case when “c is the encryption of m’
using sk’

@ So, the scheme is not correct
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Characterizing Security in the Graph Representation |

For every cipher text c, there exists i € {0,1,2,...} such that it
receives exactly i edges from every message m € M

Proof Qutline.
@ Consider any cipher text c € C
@ By security, the following quantity is P[M = m] for all m € M

P[M=m,C = (]

P[M=m|C=c|= P[C =

C=c|M=m|

:IP’[M:m]P[ PIC=d

e This implies that P [C = ¢|M = m] is identical to P[C = ¢]
for all m
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Characterizing Security in the Graph Representation |l

e Note that
PI[C=c=Y v emP[C=cM=m]-P[M=n']

@ Therefore, we can interpret the quantity P[C = ¢] as an
average of all the entries in the set

A= {IP’ [C=cIM=n'], form' € M} where the entry
P [C = ¢c|M = m'] has weight P [M = ']

@ Security states that the “average” is identical to all the
elements in the set A

@ So, all the elements in the set A are identical

o Note that P [C = ¢c|M = m| = npm/|K|, where np, c is the
number of edges between the message m and cipher text ¢

o Therefore, for a fixed cipher-text ¢ we have ny, c = ngy , for
mm e M
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Summary

Figure: Correctness rules out this case.

@ (0
@

Figure: Security rules out this case.
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Shannon's Theorem |

Let (Gen, Enc, Dec) be a private-key encryption scheme that
satisfies the restrictions in Figure 1. If this scheme is correct and
secure, then|KC| >|M|.
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Shannon's Theorem I

Proof

If possible let (Gen, Enc, Dec) be a secure private-key
encryption scheme that satisfies the constraints in Figure 1
such that |[K] <| M|

Consider the graph of this private-key encryption scheme
There are |K| edges incident on each message m € M
There are a total of | M| messages in the left set

The total number of edges, therefore, is | M| -|K|

Security implies that every cipher text receives equal edges
from each message. So, the number of edges incident on any
cipher text is 0, or |M| , or 2| M|, or ...

Since there are | M| || > 0 edges in total, there is one cipher
text c that receives |M| , or 2| M|, or 3| M|, ... edges.

Now, the cipher text c receives edges from every message in
M. But there are only || <| M| distinct labels.
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Shannon's Theorem Il

@ So, using the pigeon-hole principle, the cipher text c is
connected to two distinct messages using the same secret key

@ Therefore, this scheme is not correct!
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Comments on the Graph Notation

o Every private-key encryption scheme can be represented using
the graph representation

@ The canonical key generation algorithm, outputs a random
sk & KC

@ The canonical encryption of m using the secret-key sk is the
cipher-text ¢ such that (m, ¢) is labeled sk

@ The canonical decryption of a cipher-text ¢ using the
secret-key sk is the message m such that (m, c) is labeled sk

@ The canonical encryption and decryption algorithms exist but
need not be efficient
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One-time Pad is Optimal

e Let (G,0) be a group
e Correctness Condition. There does not exist m # m’ and sk
such that m o sk = m’ o sk (you proved this in HW0)

e Security Condition. There does not exists m, sk # sk’ such
that mo sk = mo sk’ (you will prove this in HW2)

e And we have |IC| =| M| (Inequality is Tight!)
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Limitations |

@ As the name suggests, you cannot send two messages using
the same secret-key

@ Suppose Alice computes ¢; = my o sk and ¢ = mp o sk and
sends (ci1, ¢2) to Bob

@ Obviously Bob can decrypt both the cipher-texts using the
secret-key sk

@ However the security is lost

© Suppose the adversary thinks that the first cipher-text is an
encryption of the message m;

© Then the secret-key that explains this pair of message and
cipher-text is sk = inv(m1) o ¢

© This implies that the second cipher-text encrypts the
message my = ¢ o inv(cy) o my
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Limitations Il

@ That is, conditioned on the first message, the second message
is fixed (In a secure two-message encryption scheme, we
expect that the second message is independently distribution
even conditioned on the first message)
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Limitations Il

An Example:
o Consider the (Zgs, +) group
@ Suppose we encrypt ¢; = my + sk and ¢ = my + sk

@ Seeing the cipher-texts (c1, ¢2), the adversary knows that the
two messages are on the form (m1, ¢, — ¢ + my)

@ The second message is fixed conditioned on my
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Limitations |V

Another Example

o Consider the (Z3, +) group (here “+" is the coordinate-wise
addition modulo 2)

@ Here ¢ — ¢ determines which bits of m; and m» are
identical /different
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Limitations V

Horrible Encryption
@ Suppose someone picks sk & Zoe
@ And encrypts an entire well-formed english sentence
mymy ... mp as (my + sk)(my + sk) ... (m, + sk)

@ Given this cipher-text an adversary can compute the
frequency-list of alphabets in the cipher-text to guess the sk
such that the frequency-list matches the one for well-formed

English sentences
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Additional Reading

e Additional Reading: Caesar cipher, Cryptanalysis of Caesar
cipher, Vigenére Cipher, Kasiski Method, Index of coincidence
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Simulation Argument: Advanced Reading |

@ Suppose we are working with the group (Zge, +)

@ Suppose the adversary sees two cipher-texts ¢; = m; + sk and
¢ = mo + sk

e We want to claim that the adversary learns only (m; — my)!
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Simulation Argument: Advanced Reading ||

@ The adversary can, at least, compute (m; — my)

@ But, how to argue that it learns only (m; — my)?
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Simulation Argument: Advanced Reading IlI

@ We proceed by using a Simulation Argument

@ Suppose we want to state that the adversary learns only
“—blah-"

@ Then, we construct a polynomial-time algorithm, called the
simulator, that takes as input “—blah—" and its outputs has the
same distribution as the adversary's view

@ For example, in this case “—blah-"is “A = (m; — my),” and the
simulator needs to output the view of the adversary (Ci, (2)
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Simulation Argument: Advanced Reading IV

o Consider the algorithm below

Sim(A) :
@ Sample x e
@ Output (x,x — A)

@ The distribution of the output of this algorithm is identical to
the distribution of (Ci, (2)
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