Lecture 06: Secret Sharing Schemes (4)

- State and Prove the security of Shamir's Secret Sharing Scheme
- We will begin by recalling the basics of probability
- We will define security of a secret sharing scheme
- We will provide the outline of the security proof for Shamir's Secret Sharing Scheme (the full proof will be derived by you in the homework)

Random Variable and Sample Space

- A sample space is a set Ω
- A random variable C over the sample space Ω is a distribution that assigns probability to every element in Ω

For example

- Let $\Omega=\{H, T\}$
- Let C be a random variable over the sample space Ω such that
- $\mathbb{P}[C=H]=1 / 3$, and
- $\mathbb{P}[C=T]=2 / 3$.
- Semantics: We have a coin C. We know that the probability that, when tossed, the outcome is Heads is $1 / 3$. And, the probability that, when tosses, the outcome is Tails is $2 / 3$.
- Note: Before tossing the coin, we have probabilities associated with every outcome in the sample space. Once tossed, the outcome is fixed.

Joint Distribution I

- Suppose C_{1} is a random variable over the sample space Ω_{1}
- Suppose C_{2} is a random variable over the sample space Ω_{2}
- There might be correlations between these random variables. So, represent it as a joint variable over the sample space $\Omega_{1} \times \Omega_{2}$
- For example, let $\Omega_{1}=\{H, T\}$ and $\Omega_{2}=\{H, T\}$
- Let $\left(C_{1}, C_{2}\right)$ be a joint distribution over $\Omega_{1} \times \Omega_{2}$
- $\mathbb{P}\left[C_{1}=H, C_{2}=H\right]=0$
- $\mathbb{P}\left[C_{1}=H, C_{2}=T\right]=1 / 3$
- $\mathbb{P}\left[C_{1}=T, C_{2}=H\right]=1 / 3$
- $\mathbb{P}\left[C_{1}=T, C_{2}=T\right]=1 / 3$

Joint Distribution II

- Note that

$$
\begin{aligned}
\mathbb{P}\left[C_{1}=H\right] & =\mathbb{P}\left[C_{1}=H, C_{2}=H\right]+\mathbb{P}\left[C_{1}=H, C_{2}=T\right] \\
& =0+1 / 3=1 / 3
\end{aligned}
$$

In general

- Let (A, B) be a joint distribution over the sample space $\Omega_{A} \times \Omega_{B}$
- Then, we have:

$$
\mathbb{P}[A=a]=\sum_{b \in \Omega_{B}} \mathbb{P}[A=a, B=b]
$$

Joint Distribution III

- Conditional Probability: Suppose we are guaranteed that $C_{2}=T$. Conditioned on this event, what is the probability that $C_{1}=H$.
- Conditioned on $C_{2}=T$, there are two possibilities ($\left.C_{1}=H, C_{2}=T\right)$ and ($\left.C_{1}=T, C_{2}=T\right)$. The probabilities of these events are $1 / 3$ and $1 / 3$, respectively.
- The probability that $C_{2}=T$ happens is $1 / 3+1 / 3=2 / 3$.
- The probability that $\left(C_{1}=H, C_{2}=T\right)$ happens is $1 / 3$.
- Putting things together: Starting with the total budget of $2 / 3$, the interesting event happens with probability $1 / 3$.
- What is the fraction of the interesting probability in the total budget? The answer is $(1 / 3) /(2 / 3)=1 / 2$.
- This is the probability of $C_{1}=H$ conditioned on $C_{2}=T$.
- Conclusion: $\mathbb{P}\left[C_{1}=H \mid C_{2}=T\right]=1 / 2$

Joint Distribution IV

- In general, the following holds

$$
\mathbb{P}[A=a \mid B=b]=\frac{\mathbb{P}[A=a, B=b]}{\mathbb{P}[B=b]}=\frac{\mathbb{P}[A=a, B=b]}{\sum_{a \in \Omega_{A}} \mathbb{P}[A=a, B=b]}
$$

- This is known as the Bayes' Rule

Joint Distribution V

- Chain Rule
- Suppose $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is a joint distribution over the sample space $\Omega_{1} \times \Omega_{2} \times \cdots \Omega_{n}$ item Then the following holds

$$
\begin{aligned}
& \mathbb{P}\left[X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right] \\
=\mathbb{P}\left[X_{1}\right. & \left.=x_{1}\right] \times \mathbb{P}\left[X_{2}=x_{2} \mid X_{1}=x_{1}\right] \times \mathbb{P}\left[X_{3}=x_{3} \mid X_{2}=x_{2}, X_{1}=x_{1}\right] \\
& \times \cdots \times \mathbb{P}\left[X_{n}=x_{n} \mid X_{n-1}=x_{n-1}, \ldots, X_{1}=x_{1}\right]
\end{aligned}
$$

Developing Notion of Security I

The Setting

- We shall work over \mathbb{Z}_{p}, where p is a prime number
- We want to share to n parties and support t reconstruction, where $n \leqslant p-1$
- Let $\mathbb{P}[S=s]$ be the probability that the secret is s
- Recall, that the secret sharing algorithm samples a random polynomial $p[X]$ or degree $\leqslant(t-1)$ such that $p[X=0]=s$
- The secret shares of parties $\{1, \ldots, n\}$ are defined to be $p[X=1], \ldots, p[X=n]$
- For $i \in\{1, \ldots, n\}$, the random variable S_{i} represents the secret share distribution of the i-th party

Developing Notion of Security II

- Suppose parties i_{1}, \ldots, i_{k}, where $k<t$, are colluding
- Their respective secrets are $s_{i_{1}}, \ldots, s_{i_{k}}$
- We want to say that a secure secret sharing scheme provides no additional information about the secrets
- Mathematically, this is summarized as

Definition (Secure Secret-sharing Scheme)

For all $s \in \mathbb{Z}_{p}$ we have

$$
\mathbb{P}[S=s]=\mathbb{P}\left[S=s \mid S_{i_{1}}=s_{i_{1}}, S_{i_{2}}=s_{i_{2}}, \ldots, S_{i_{k}}=s_{i_{k}}\right]
$$

Developing Notion of Security III

A Clarification

- Suppose we want to share a message $s \in\{0,1\}$ among 4 parties such that any two of them can reconstruct it
- So, we choose $p=5$
- The probability of the secret is as follows

$$
\begin{aligned}
& \mathbb{P}[S=0]=0.9 \\
& \mathbb{P}[S=1]=0.1 \\
& \mathbb{P}[S=2]=0 \\
& \mathbb{P}[S=3]=0 \\
& \mathbb{P}[S=4]=0
\end{aligned}
$$

- The security of a secret-sharing scheme insists that even after seeing the secret-shares, the conditional distribution of secrets should remain the same

Developing Notion of Security IV

The outline for the proof of security for Shamir's Secret Sharing Scheme

- Remember, this is only a proof outline. You will prove the entire result formally in the homework

Developing Notion of Security V

- Consider the following manipulation

$$
\begin{aligned}
& \mathbb{P}\left[S=s \mid S_{i_{1}}=s_{i_{1}}, \ldots, S_{i_{k}}=s_{i_{k}}\right] \\
& =\frac{\mathbb{P}\left[S=s, S_{i_{1}}=s_{i_{1}}, \ldots, S_{i_{k}}=s_{i_{k}}\right]}{\mathbb{P}\left[S_{i_{1}}=s_{i_{1}}, \ldots, S_{i_{k}}=s_{i_{k}}\right]} \\
& =\frac{\mathbb{P}\left[p[X=0]=s, p\left[X=i_{1}\right]=s_{i_{1}}, \ldots, p\left[X=i_{k}\right]=s_{i_{k}}\right]}{\mathbb{P}\left[p\left[X=i_{1}\right]=s_{i_{1}}, \ldots, p\left[X=i_{k}\right]=s_{i_{k}}\right]} \\
& =\frac{\mathbb{P}[S=s] \cdot \overbrace{\frac{1}{p} \cdot \frac{1}{p} \ldots \frac{1}{p}}^{k \text {-times }}}{\overbrace{\frac{1}{p} \cdot \frac{1}{p} \ldots \frac{1}{p}}^{k \text {-times }}}=\mathbb{P}[S=s] \\
&
\end{aligned}
$$

Developing Notion of Security VI

The previous manipulation relied on the following two results

Claim

$$
\begin{gathered}
\mathbb{P}\left[p[X=0]=s, p\left[X=i_{1}\right]=s_{i_{1}}, \ldots, p\left[X=i_{k}\right]=s_{i_{k}}\right]=\mathbb{P}[S=s] \cdot \frac{1}{p^{k}} \\
\mathbb{P}\left[p\left[X=i_{1}\right]=s_{i_{1}}, \ldots, p\left[X=i_{k}\right]=s_{i_{k}}\right]=\frac{1}{p^{k}}
\end{gathered}
$$

You will prove this result in the homework.

