
Lecture 06: Secret Sharing Schemes (4)
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Aim

State and Prove the security of Shamir’s Secret Sharing
Scheme

We will begin by recalling the basics of probability
We will define security of a secret sharing scheme
We will provide the outline of the security proof for Shamir’s
Secret Sharing Scheme (the full proof will be derived by you in
the homework)
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Random Variable and Sample Space

A sample space is a set Ω

A random variable C over the sample space Ω is a distribution
that assigns probability to every element in Ω

For example
Let Ω = {H,T}
Let C be a random variable over the sample space Ω such that

P [C = H] = 1/3, and
P [C = T ] = 2/3.

Semantics: We have a coin C . We know that the probability
that, when tossed, the outcome is Heads is 1/3. And, the
probability that, when tosses, the outcome is Tails is 2/3.
Note: Before tossing the coin, we have probabilities associated
with every outcome in the sample space. Once tossed, the
outcome is fixed.
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Joint Distribution I

Suppose C1 is a random variable over the sample space Ω1

Suppose C2 is a random variable over the sample space Ω2

There might be correlations between these random variables.
So, represent it as a joint variable over the sample space
Ω1 × Ω2

For example, let Ω1 = {H,T} and Ω2 = {H,T}
Let (C1,C2) be a joint distribution over Ω1 × Ω2

P [C1 = H,C2 = H] = 0
P [C1 = H,C2 = T ] = 1/3
P [C1 = T ,C2 = H] = 1/3
P [C1 = T ,C2 = T ] = 1/3
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Joint Distribution II
Note that

P [C1 = H] = P [C1 = H,C2 = H] + P [C1 = H,C2 = T ]

= 0 + 1/3 = 1/3

In general
Let (A,B) be a joint distribution over the sample space
ΩA × ΩB

Then, we have:

P [A = a] =
∑
b∈ΩB

P [A = a,B = b]
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Joint Distribution III

Conditional Probability: Suppose we are guaranteed that
C2 = T . Conditioned on this event, what is the probability
that C1 = H.

Conditioned on C2 = T , there are two possibilities
(C1 = H,C2 = T ) and (C1 = T ,C2 = T ). The probabilities
of these events are 1/3 and 1/3, respectively.

The probability that C2 = T happens is 1/3 + 1/3 = 2/3.

The probability that (C1 = H,C2 = T ) happens is 1/3.

Putting things together: Starting with the total budget of 2/3,
the interesting event happens with probability 1/3.

What is the fraction of the interesting probability in the total
budget? The answer is (1/3) / (2/3) = 1/2.

This is the probability of C1 = H conditioned on C2 = T .

Conclusion: P
[
C1 = H|C2 = T

]
= 1/2
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Joint Distribution IV

In general, the following holds

P
[
A = a|B = b

]
=

P [A = a,B = b]

P [B = b]
=

P [A = a,B = b]∑
a∈ΩA

P [A = a,B = b]

This is known as the Bayes’ Rule
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Joint Distribution V

Chain Rule

Suppose (X1,X2, . . . ,Xn) is a joint distribution over the
sample space Ω1 × Ω2 ×· · ·Ωn item Then the following holds

P [X1 = x1,X2 = x2, . . . ,Xn = xn]

=P [X1 = x1]× P
[
X2 = x2|X1 = x1

]
× P

[
X3 = x3|X2 = x2,X1 = x1

]
×· · · × P

[
Xn = xn|Xn−1 = xn−1, . . . ,X1 = x1

]
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Developing Notion of Security I

The Setting

We shall work over Zp, where p is a prime number

We want to share to n parties and support t reconstruction,
where n 6 p − 1

Let P [S = s] be the probability that the secret is s

Recall, that the secret sharing algorithm samples a random
polynomial p[X ] or degree 6 (t − 1) such that p[X = 0] = s

The secret shares of parties {1, . . . , n} are defined to be
p[X = 1], . . . , p[X = n]

For i ∈ {1, . . . , n}, the random variable Si represents the
secret share distribution of the i-th party
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Developing Notion of Security II

Suppose parties i1, . . . , ik , where k < t, are colluding

Their respective secrets are si1 , . . . , sik

We want to say that a secure secret sharing scheme provides
no additional information about the secrets

Mathematically, this is summarized as

Definition (Secure Secret-sharing Scheme)

For all s ∈ Zp we have

P [S = s] = P
[
S = s|Si1 = si1 , Si2 = si2 , . . . ,Sik = sik

]
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Developing Notion of Security III

A Clarification

Suppose we want to share a message s ∈ {0, 1} among 4
parties such that any two of them can reconstruct it

So, we choose p = 5

The probability of the secret is as follows

P [S = 0] = 0.9
P [S = 1] = 0.1
P [S = 2] = 0
P [S = 3] = 0
P [S = 4] = 0

The security of a secret-sharing scheme insists that even after
seeing the secret-shares, the conditional distribution of secrets
should remain the same
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Developing Notion of Security IV

The outline for the proof of security for Shamir’s Secret Sharing
Scheme

Remember, this is only a proof outline. You will prove the
entire result formally in the homework
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Developing Notion of Security V

Consider the following manipulation

P
[
S = s|Si1 = si1 , . . . ,Sik = sik

]
=

P
[
S = s,Si1 = si1 , . . . ,Sik = sik

]
P
[
Si1 = si1 , . . . ,Sik = sik

]
=

P
[
p[X = 0] = s, p[X = i1] = si1 , . . . , p[X = ik ] = sik

]
P
[
p[X = i1] = si1 , . . . , p[X = ik ] = sik

]

=

P [S = s] ·

k-times︷ ︸︸ ︷
1
p
· 1
p
. . .

1
p

k-times︷ ︸︸ ︷
1
p
· 1
p
. . .

1
p

= P [S = s]
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Developing Notion of Security VI

The previous manipulation relied on the following two results

Claim

P
[
p[X = 0] = s, p[X = i1] = si1 , . . . , p[X = ik ] = sik

]
= P [S = s] · 1

pk

P
[
p[X = i1] = si1 , . . . , p[X = ik ] = sik

]
=

1
pk

You will prove this result in the homework.
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