## Lecture 04: Secret Sharing Schemes (2)

We want to

- Share a secret $s \in \mathbb{Z}_{p}$ to $n$ parties, such that $\{1, \ldots, n\} \subseteq \mathbb{Z}_{p}$,
- Any two parties can reconstruct the secret $s$, and
- No party alone can predict the secret $s$


## Recall: Secret Sharing Algorithm

SecretShare( $s, n$ )

- Pick a random line $\ell(X)$ that passes through the point $(0, s)$
- This is done by picking $a_{1}$ uniformly at random from the set $\mathbb{Z}_{p}$
- And defining the polynomial $\ell(X)=a_{1} X+s$
- Evaluate $s_{1}=\ell(X=1), s_{2}=\ell(X=2), \ldots, s_{n}=\ell(X=n)$
- Secret shares for party 1 , party $2, \ldots$, party $n$ are $s_{1}, s_{2}, \ldots$, $s_{n}$, respectively


## Recall: Reconstruction Algorithm

SecretReconstruct $\left(i_{1}, s^{(1)}, i_{2}, s^{(2)}\right)$

- Reconstruct the line $\ell^{\prime}(X)$ that passes through the points $\left(i_{1}, s^{(1)}\right)$ and ( $\left.i_{2}, s^{(2)}\right)$
- We will learn a new technique to perform this step, referred to as the Lagrange Interpolation
- Define the reconstructed secret $s^{\prime}=\ell^{\prime}(0)$

We want to

- Share a secret $s \in \mathbb{Z}_{p}$ to $n$ parties, such that $\{1, \ldots, n\} \subseteq \mathbb{Z}_{p}$,
- Any $t$ parties can reconstruct the secret $s$, and
- Less than $t$ parties cannot predict the secret $s$


## Shamir's Secret Sharing Algorithm

SecretShare( $s, n$ )

- Pick a polynomial $p(X)$ of degree $\leqslant(t-1)$ that passes through the point $(0, s)$
- This is done by picking $a_{1}, \ldots, a_{t-1}$ independently and uniformly at random from the set $\mathbb{Z}_{p}$
- And defining the polynomial

$$
\ell(X)=a_{t-1} X^{t-1}+a_{t-2} X^{t-2}+\ldots a_{1} X+s
$$

- Evaluate $s_{1}=p(X=1), s_{2}=p(X=2), \ldots, s_{n}=p(X=n)$
- Secret shares for party 1 , party $2, \ldots$, party $n$ are $s_{1}, s_{2}, \ldots$, $s_{n}$, respectively

SecretReconstruct $\left(i_{1}, s^{(1)}, i_{2}, s^{(2)}, \ldots, i_{t}, s^{(t)}\right)$

- Use Lagrange Interpolation to construct a polynomial $p^{\prime}(X)$ that passes through $\left(i_{1}, s^{(1)}\right), \ldots,\left(i_{t},{ }^{(t)}\right)$ (we describe this algorithm in the following slides)
- Define the reconstructed secret $s^{\prime}=p^{\prime}(0)$


## Lagrange Interpolation: Introduction I

- Consider the example we were considering in the previous lecture
- The secret was $s=3$
- Secret shares of party $1,2,3$, and 4 , were $0,2,4$, and 1 , respectively
- Suppose party 2 and party 3 are trying to reconstruct the secret
- Party 2 has secret share 2 , and
- Party 3 has secret share 4
- We are interested in finding the line that passes through the points $(2,2)$ and $(3,4)$


## Lagrange Interpolation: Introduction II

- Subproblem 1 :
- Let us find the line that passes through $(2,2)$ and $(3,0)$
- Note that at $X=3$ this line evaluates to 0 , so $X=3$ is a root of the line
- So, the line has the equation $\ell_{1}(X)=c \cdot(X-3)$, where $c$ is a suitable constant
- Now, we find the value of $c$ such that $\ell_{1}(X)$ passes through the point $(2,2)$
- So, we should have $c \cdot(2-3)=2$, i.e., $c=3$
- $\ell_{1}(X)=3 \cdot(X-3)$ is the equation of that line
- Subproblem 2:
- Let us find the line that passes through $(2,0)$ and $(3,4)$
- Note that at $X=2$ this line evaluates to 0 , so $X=2$ is a root of the line
- So, the line has the equality $\ell_{2}(X)=c \cdot(X-2)$, where $c$ is a suitable constant
- Now, we find the value of $c$ such that $\ell_{2}(X)$ passes through the point $(3,4)$
- So, we should have $c \cdot(3-2)=4$, i.e. $c=4$
- $\ell_{2}(X)=4 \cdot(X-2)$


## Lagrange Interpolation: Introduction IV

- Putting Things Together:
- Define $\ell^{\prime}(X)=\ell_{1}(X)+\ell_{2}(X)$
- That is, we have

$$
\ell^{\prime}(X)=3 \cdot(X-3)+4 \cdot(X-2)
$$

- Evaluation of $\ell^{\prime}(X)$ at $X=0$ is

$$
s^{\prime}=\ell^{\prime}(X=0)=3 \cdot(-3)+4 \cdot(-2)=3 \cdot 2+4 \cdot 3=1+2=3
$$

## Uniqueness of Polynomial I

We shall prove the following result

## Theorem

There is a unique polynomial of degree at most $d$ that passes through $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$

- If possible, let there exist two distinct polynomials of degree $\leqslant d$ such that they pass through the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, $\ldots,\left(x_{d+1}, y_{d+1}\right)$
- Let the first polynomial be

$$
p(X)=a_{d} X^{d}+a_{d-1} X^{d-1}+\cdots+a_{1} X+a_{0}
$$

- Let the second polynomial be

$$
p^{\prime}(X)=a_{d}^{\prime} X^{d}+a_{d-1}^{\prime} X^{d-1}+\cdots+a_{1}^{\prime} X+a_{0}^{\prime}
$$

## Uniqueness of Polynomial II

- Let $p^{*}(X)$ be the polynomial that is the difference of the polynomials $p(X)$ and $p^{\prime}(X)$, i.e.,

$$
p^{*}(X)=p(X)-p^{\prime}(X)=\left(a_{d}-a_{d}^{\prime}\right) X^{d}+\ldots\left(a_{1}-a_{1}^{\prime}\right) X+\left(a_{0}-a_{0}^{\prime}\right)
$$

- Observation. The degree of $p^{*}(X)$ is $\leqslant d$


## Uniqueness of Polynomial III

- For $i \in\{1, \ldots, d+1\}$, note that at $X=x_{i}$ both $p(X)$ and $p^{\prime}(X)$ evaluate to $y_{i}$
- So, the polynomial $p^{*}(X)$ at $X=x_{i}$ evaluates to $y_{i}-y_{i}=0$, i.e. $x_{i}$ is a root of the polynomial $p^{*}(X)$
- Observation. The polynomial $p^{*}(X)$ has roots $X=x_{1}$, $X=x_{2}, \ldots, X=x_{d+1}$


## Uniqueness of Polynomial IV

- We will use the following result


## Theorem (Schwartz-Zippel, Intuitive)

A non-zero polynomial of degree $d$ has at most $d$ roots (over any field)

## - Conclusion.

- Based on the two observations above, we have $a \leqslant d$ degree polynomial $p^{*}(X)$ that has at least $(d+1)$ distinct roots $x_{1}$, $\ldots, x_{d+1}$
- This implies, by Schwartz-Zippel Lemma, that the polynomial is the zero-polynomial.
- That is, $p^{*}(X)=0$.
- This implies that $p(X)$ and $p^{\prime}(X)$ are identical
- This contradicts the initial assumption that there are two distinct polynomials $p(X)$ and $p^{\prime}(X)$


## Summary

The proof in the previous slides proves that

- Given a set of points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$
- There is a unique polynomial of degree at most $d$ that passes through all of them!


## Lagrange Interpolation I

- Suppose we are interested in constructing a polynomial of degree $\leqslant d$ that passes through the points $\left(x_{1}, y_{1}\right), \ldots$, $\left(x_{d+1}, y_{d+1}\right)$


## Lagrange Interpolation II

- Subproblem $i$ :
- We want to construct a polynomial $p_{i}(X)$ of degree $\leqslant d$ that passes through $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, 0\right)$, where $j \neq i$
- So, $\left\{x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d+1}\right\}$ are roots of the polynomial $p_{i}(X)$
- Therefore, the polynomial $p_{i}(X)$ looks as follows

$$
p_{i}(X)=c \cdot\left(X-x_{1}\right) \cdots\left(X-x_{i-1}\right)\left(X-x_{i+1}\right) \cdots\left(X-x_{d+1}\right)
$$

- Tersely, we will write this as

$$
p_{i}(X)=c \cdot \prod_{\substack{j \in\{1, \ldots, d+1\} \\ \text { such that } j \neq i}}\left(X-x_{j}\right)
$$

## Lagrange Interpolation III

- Now, to evaluate $c$ we will use the property that $p_{i}\left(x_{i}\right)=y_{i}$
- Observe that the following value of $c$ suffices

$$
c=\frac{y_{i}}{\prod_{\substack{j \in\{1, \ldots, d+1\} \\ \text { such that } j \neq i}}\left(x_{i}-x_{j}\right)}
$$

- So, the polynomial $p_{i}(X)$ that passes through $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, 0\right)$, where $j \neq i$ is

$$
p_{i}(X)=\frac{y_{i}}{\prod_{\substack{j \in\{1, \ldots, d+1\} \\ \text { such that } j \neq i}}\left(x_{i}-x_{j}\right)} \cdot \prod_{\substack{j \in\{1, \ldots, d+1\} \\ \text { such that } j \neq i}}\left(X-x_{j}\right)
$$

- Observe that $p_{i}(X)$ has degree $d$


## Lagrange Interpolation IV

- Putting Things Together:
- Consider the polynomial

$$
p(X)=p_{1}(X)+p_{2}(X)+\ldots+p_{d+1}(X)
$$

- This is the desired polynomial that passes through $\left(x_{i}, y_{i}\right)$


## Claim

The polynomial $p(X)$ passes through $\left(x_{i}, y_{i}\right)$, for $i \in\{1, \ldots, d+1\}$

## Proof.

- Note that, for $j \in\{1, \ldots, d+1\}$, we have

$$
p_{j}\left(x_{i}\right)= \begin{cases}y_{i}, & \text { if } j=i \\ 0, & \text { otherwise }\end{cases}
$$

- Therefore, $p\left(x_{i}\right)=\sum_{j=1}^{d+1} p_{j}\left(x_{i}\right)=y_{i}$
- Given points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$
- Lagrange Interpolation provides one polynomial of degree $\leqslant d$ polynomial that passes through all of them
- Theorem 1 states that this $\leqslant d$ degree polynomial is unique
- Let us find a degree $\leqslant 2$ polynomial that passes through the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$
- Subproblem 1:
- We want to find a degree $\leqslant 2$ polynomial that passes through the points $\left(x_{1}, y_{1}\right),\left(x_{2}, 0\right)$, and $\left(x_{3}, 0\right)$
- The polynomial is

$$
p_{1}(X)=\frac{y_{1}}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}\left(X-x_{2}\right)\left(X-x_{3}\right)
$$

## Example for Lagrange Interpolation II

- Subproblem 2:
- We want to find a degree $\leqslant 2$ polynomial that passes through the points $\left(x_{1}, 0\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, 0\right)$.
- The polynomial is

$$
p_{2}(X)=\frac{y_{2}}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}\left(X-x_{1}\right)\left(X-x_{3}\right)
$$

- Subproblem 3:
- We want to find a degree $\leqslant 2$ polynomial that passes through the points $\left(x_{1}, 0\right),\left(x_{2}, 0\right)$, and $\left(x_{3}, y_{3}\right)$.
- The polynomial is

$$
p_{2}(X)=\frac{y_{3}}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)}\left(X-x_{1}\right)\left(X-x_{2}\right)
$$

## Example for Lagrange Interpolation III

- Putting Things Together: The reconstructed polynomial is

$$
p(X)=p_{1}(X)+p_{2}(X)+p_{3}(X)
$$

This completes the description of Shamir's Secret Sharing algorithm. In the following lectures we will argue its security.

