Lecture 04: Secret Sharing Schemes (2)

Secret Sharing

A⊒ ▶ < ∃

We want to

- Share a secret $s \in \mathbb{Z}_p$ to *n* parties, such that $\{1, \ldots, n\} \subseteq \mathbb{Z}_p$,
- Any two parties can reconstruct the secret s, and
- No party alone can predict the secret s

▲ □ ▶ → □ ▶

SecretShare(s, n)

- Pick a random line $\ell(X)$ that passes through the point (0, s)
 - This is done by picking a_1 uniformly at random from the set \mathbb{Z}_p
 - And defining the polynomial $\ell(X) = a_1 X + s$
- Evaluate $s_1 = \ell(X = 1)$, $s_2 = \ell(X = 2)$, ..., $s_n = \ell(X = n)$
- Secret shares for party 1, party 2, ..., party *n* are *s*₁, *s*₂, ..., *s*_n, respectively

イロト イポト イヨト イヨト

SecretReconstruct($i_1, s^{(1)}, i_2, s^{(2)}$)

- Reconstruct the line $\ell'(X)$ that passes through the points $(i_1, s^{(1)})$ and $(i_2, s^{(2)})$
 - We will learn a new technique to perform this step, referred to as the Lagrange Interpolation
- Define the reconstructed secret $s' = \ell'(0)$

< ロ > < 同 > < 回 > < 回 > < 回 > <

We want to

- Share a secret $s \in \mathbb{Z}_p$ to *n* parties, such that $\{1, \ldots, n\} \subseteq \mathbb{Z}_p$,
- Any t parties can reconstruct the secret s, and
- Less than t parties cannot predict the secret s

▲伺 ▶ ▲ 国 ▶

SecretShare(s, n)

- Pick a polynomial p(X) of degree ≤ (t − 1) that passes through the point (0, s)
 - This is done by picking a₁,..., a_{t-1} independently and uniformly at random from the set Z_p
 - And defining the polynomial $\ell(X) = a_{t-1}X^{t-1} + a_{t-2}X^{t-2} + \dots a_1X + s$
- Evaluate $s_1 = p(X = 1)$, $s_2 = p(X = 2)$, ..., $s_n = p(X = n)$
- Secret shares for party 1, party 2, ..., party *n* are *s*₁, *s*₂, ..., *s_n*, respectively

イロト イポト イヨト イヨト

 $\mathsf{SecretReconstruct}(i_1, s^{(1)}, i_2, s^{(2)}, \dots, i_t, s^{(t)})$

- Use Lagrange Interpolation to construct a polynomial p'(X) that passes through $(i_1, s^{(1)}), \ldots, (i_t, {}^{(t)})$ (we describe this algorithm in the following slides)
- Define the reconstructed secret s' = p'(0)

- 4 同 2 4 日 2 4 日 2

Lagrange Interpolation: Introduction I

- Consider the example we were considering in the previous lecture
- The secret was *s* = 3
- Secret shares of party 1, 2, 3, and 4, were 0, 2, 4, and 1, respectively
- Suppose party 2 and party 3 are trying to reconstruct the secret
 - Party 2 has secret share 2, and
 - Party 3 has secret share 4
- We are interested in finding the line that passes through the points (2, 2) and (3, 4)

Lagrange Interpolation: Introduction II

- Subproblem 1:
 - Let us find the line that passes through (2,2) and (3,0)
 - Note that at X = 3 this line evaluates to 0, so X = 3 is a root of the line
 - So, the line has the equation $\ell_1(X) = c \cdot (X 3)$, where c is a suitable constant
 - Now, we find the value of c such that l₁(X) passes through the point (2,2)
 - So, we should have $c \cdot (2-3) = 2$, i.e., c = 3
 - $\ell_1(X) = 3 \cdot (X 3)$ is the equation of that line

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Lagrange Interpolation: Introduction III

- Subproblem 2:
 - Let us find the line that passes through (2,0) and (3,4)
 - Note that at X = 2 this line evaluates to 0, so X = 2 is a root of the line
 - So, the line has the equality $\ell_2(X) = c \cdot (X 2)$, where c is a suitable constant
 - Now, we find the value of c such that l₂(X) passes through the point (3, 4)
 - So, we should have $c \cdot (3-2) = 4$, i.e. c = 4

•
$$\ell_2(X) = 4 \cdot (X - 2)$$

イロト イポト イヨト イヨト

Lagrange Interpolation: Introduction IV

• Putting Things Together:

- Define $\ell'(X) = \ell_1(X) + \ell_2(X)$
- That is, we have

$$\ell'(X) = 3 \cdot (X - 3) + 4 \cdot (X - 2)$$

• Evaluation of $\ell'(X)$ at X = 0 is

$$s' = \ell'(X = 0) = 3 \cdot (-3) + 4 \cdot (-2) = 3 \cdot 2 + 4 \cdot 3 = 1 + 2 = 3$$

・ロト ・ 同ト ・ モト ・ モト

Uniqueness of Polynomial I

We shall prove the following result

Theorem

There is a unique polynomial of degree at most d that passes through (x_1, y_1) , (x_2, y_2) , ..., (x_{d+1}, y_{d+1})

- If possible, let there exist two distinct polynomials of degree $\leq d$ such that they pass through the points (x_1, y_1) , (x_2, y_2) , ..., (x_{d+1}, y_{d+1})
- Let the first polynomial be

$$p(X) = a_d X^d + a_{d-1} X^{d-1} + \dots + a_1 X + a_0$$

• Let the second polynomial be

$$p'(X) = a'_d X^d + a'_{d-1} X^{d-1} + \dots + a'_1 X + a'_0$$

Secret Sharing

・ 同 ト ・ ヨ ト ・ ヨ ト

Let p*(X) be the polynomial that is the difference of the polynomials p(X) and p'(X), i.e.,

$$p^*(X) = p(X) - p'(X) = (a_d - a'_d)X^d + \dots (a_1 - a'_1)X + (a_0 - a'_0)$$

• **Observation**. The degree of $p^*(X)$ is $\leq d$

< ロ > < 同 > < 回 > < 回 > < 回 > <

- For $i \in \{1, ..., d + 1\}$, note that at $X = x_i$ both p(X) and p'(X) evaluate to y_i
- So, the polynomial p^{*}(X) at X = x_i evaluates to y_i − y_i = 0, i.e. x_i is a root of the polynomial p^{*}(X)
- Observation. The polynomial $p^*(X)$ has roots $X = x_1$, $X = x_2, \ldots, X = x_{d+1}$

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Uniqueness of Polynomial IV

• We will use the following result

Theorem (Schwartz–Zippel, Intuitive)

A non-zero polynomial of degree d has at most d roots (over any field)

- Conclusion.
 - Based on the two observations above, we have a ≤ d degree polynomial p*(X) that has at least (d + 1) distinct roots x₁, ..., x_{d+1}
 - This implies, by Schwartz–Zippel Lemma, that the polynomial is the zero-polynomial.
 - That is, $p^*(X) = 0$.
 - This implies that p(X) and p'(X) are identical
 - This contradicts the initial assumption that there are two distinct polynomials p(X) and p'(X)

・ロン ・同 と ・ 同 と ・ 同 と

The proof in the previous slides proves that

- Given a set of points (x_1, y_1) , \ldots , (x_{d+1}, y_{d+1})
- There is a <u>unique</u> polynomial of degree at most *d* that passes through all of them!

Suppose we are interested in constructing a polynomial of degree ≤ d that passes through the points (x₁, y₁), ..., (x_{d+1}, y_{d+1})

< ロ > < 同 > < 回 > < 回 > < 回 > <

• Subproblem i:

- We want to construct a polynomial $p_i(X)$ of degree $\leq d$ that passes through (x_i, y_i) and $(x_j, 0)$, where $j \neq i$
- So, $\{x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d+1}\}$ are roots of the polynomial $p_i(X)$
- Therefore, the polynomial $p_i(X)$ looks as follows

$$p_i(X) = c \cdot (X - x_1) \cdots (X - x_{i-1})(X - x_{i+1}) \cdots (X - x_{d+1})$$

• Tersely, we will write this as

$$p_i(X) = c \cdot \prod_{\substack{j \in \{1, \dots, d+1\} \\ ext{ such that } j \neq i}} (X - x_j)$$

Lagrange Interpolation III

- Now, to evaluate c we will use the property that $p_i(x_i) = y_i$
- Observe that the following value of c suffices

$$c = rac{y_i}{\prod_{j \in \{1, \dots, d+1\}} (x_i - x_j) \atop ext{ such that } j \neq i}}$$

• So, the polynomial $p_i(X)$ that passes through (x_i, y_i) and $(x_j, 0)$, where $j \neq i$ is

$$p_i(X) = \frac{y_i}{\prod_{j \in \{1, \dots, d+1\}} (x_i - x_j)} \cdot \prod_{\substack{j \in \{1, \dots, d+1\}\\ \text{such that } j \neq i}} (X - x_j)$$

• Observe that $p_i(X)$ has degree d

・ロト ・四ト ・ヨト ・ヨト

Lagrange Interpolation IV

- Putting Things Together:
 - Consider the polynomial

$$p(X) = p_1(X) + p_2(X) + \ldots + p_{d+1}(X)$$

• This is the desired polynomial that passes through (x_i, y_i)

Claim

The polynomial p(X) passes through (x_i, y_i) , for $i \in \{1, ..., d + 1\}$

Proof.

• Note that, for $j \in \{1,\ldots,d+1\}$, we have

$$p_j(x_i) = egin{cases} y_i, & ext{if } j = i \ 0, & ext{otherwise} \end{cases}$$

• Therefore, $p(x_i) = \sum_{j=1}^{d+1} p_j(x_i) = y_i$

Secret Sharing

- Given points $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$
- Lagrange Interpolation provides <u>one</u> polynomial of degree ≤ d polynomial that passes through all of them
- Theorem 1 states that this $\leqslant d$ degree polynomial is unique

(人間) (人) (人) (人) (人) (人)

- Let us find a degree \leq 2 polynomial that passes through the points (x_1, y_1) , (x_2, y_2) , and (x_3, y_3)
- Subproblem 1:
 - We want to find a degree ≤ 2 polynomial that passes through the points (x₁, y₁), (x₂, 0), and (x₃, 0)
 - The polynomial is

$$p_1(X) = \frac{y_1}{(x_1 - x_2)(x_1 - x_3)}(X - x_2)(X - x_3)$$

Example for Lagrange Interpolation II

- Subproblem 2:
 - We want to find a degree ≤ 2 polynomial that passes through the points (x₁, 0), (x₂, y₂), and (x₃, 0).
 - The polynomial is

$$p_2(X) = \frac{y_2}{(x_2 - x_1)(x_2 - x_3)}(X - x_1)(X - x_3)$$

- Subproblem 3:
 - We want to find a degree ≤ 2 polynomial that passes through the points (x₁, 0), (x₂, 0), and (x₃, y₃).
 - The polynomial is

$$p_2(X) = \frac{y_3}{(x_3 - x_1)(x_3 - x_2)}(X - x_1)(X - x_2)$$

Secret Sharing

< ロ > < 同 > < 回 > < 回 > < 回 > <

• Putting Things Together: The reconstructed polynomial is

$$p(X) = p_1(X) + p_2(X) + p_3(X)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

This completes the description of Shamir's Secret Sharing algorithm. In the following lectures we will argue its security.

・ 同 ト ・ ヨ ト ・ ヨ ト