Lecture 03: Secret Sharing Schemes (1)

Learning Arithmetic Over $\left(\mathbb{Z}_{p},+, \times\right)$ ।

- We have seen that $\left(\mathbb{Z}_{p},+, \times\right)$ is a field, when p is a prime
- Recall that + is integer additional modulo the prime p
- Recall that . is integer multiplication modulo the prime p
- For example, the additive inverse of x is $(p-x)$, for $x \in \mathbb{Z}_{p}$ (because $x+(p-x)=0 \bmod p$)
- In the homework you have shown that the multiplicative inverse of x is x^{p-2}, for $x \in \mathbb{Z}_{p}^{*}\left(\right.$ i.e., $\left.x \times\left(x^{p-2}\right)=1 \bmod p\right)$

Learning Arithmetic Over $\left(\mathbb{Z}_{p},+, \times\right)$ II

For a working example suppose $p=5$. Therefore, $x^{p-2}=x^{3}$ is the multiplicative inverse of x in $\left(\mathbb{Z}_{5},+, \times\right)$

- The multiplicative inverse of 1 is $1^{p-2}=1$, i.e. $(1 / 1)=1$
- The multiplicative inverse of 2 is

$$
2^{p-2}=2 \times 2 \times 2=4 \times 2=3 \text {, i.e. }(1 / 2)=3
$$

- The multiplicative inverse of 3 is

$$
3^{p-2}=3 \times 3 \times 3=4 \times 3=2 \text {, i.e. }(1 / 3)=2
$$

- The multiplicative inverse of 4 is

$$
4^{p-2}=4 \times 4 \times 4=1 \times 4=4, \text { i.e. }(1 / 4)=4
$$

Learning Arithmetic Over $\left(\mathbb{Z}_{p},+, \times\right)$ III

Interpreting "fractions" over the field $\left(\mathbb{Z}_{p},+, \times\right)$

- When we write $4 / 3$
- We mean $4 \cdot(1 / 3)$,
- That is 4 multiplied by the "multiplicative inverse of 3 "
- That is 4 multiplied by 2 (because in the previous slide we saw that the multiplicative inverse of 3 in $\left(\mathbb{Z}_{5},+, \times\right)$ is 2)
- The answer, therefore, is 3 (because $4 \times 2=3 \bmod 5$)

Note

While working over real numbers we associate " $4 / 3$ " to the fraction " $1.333 \ldots$..," i.e. a fractional number. But when working over the field $\left(\mathbb{Z}_{p},+, \times\right)$ we will interpret the expression " $4 / 3$ " as the number " $4 \times$ mult-inv(3)"

Experiments

Coding Exercise

Students are highly encouraged to go to cocalc.com and explore field arithmetic using sage

Secret Sharing: Goal (Introduction)

- Suppose a central authority P has a secret s (some natural number)
- The central authority wants to share the secret among n parties $P_{1}, P_{2}, \ldots, P_{n}$ such that
- Privacy. No party can reconstruct the secret s.
- Reconstruction. Any two parties can reconstruct the entire secret s

Secret Sharing: Algorithms (Introduction)

Sharing Algorithm: SecretShare (s, n).

- Takes as input a secret s
- Takes as input n, the number of shares it needs to create
- Outputs a vector $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ the secret shares for each party
Reconstruction Algorithm: SecretReconstruct ($\left.i_{1}, s^{(1)}, i_{2}, s^{(2)}\right)$.
- Takes as input the identity i of the first party and identity j of the second party
- Takes as input their respective secrets $s^{(1)}$ and $s^{(2)}$
- Outputs the reconstructed secret \widetilde{s}
- The probability that the reconstructed secret \widetilde{s} is identical to the original secret s is close to 1

Example: Shamir's Secret Sharing Scheme (Introduction) I

Intuition underlying the construction:

- Given one point in a plane, there are a lot of straight lines passing through it (In fact, we need the fact that every length of the intercept on the Y-axis is equally likely)
- But, given two points in a plane, there is a unique line passing through it, thus the length of the intercept on the Y-axis is unique

Example: Shamir's Secret Sharing Scheme (Introduction) II

Let $(\mathbb{F},+, \times)$ be a field such that $\{0,1, \ldots, n\} \subseteq \mathbb{F}$ and the secret $s \in \mathbb{F}$. The secret sharing algorithm is provided below. SecretShare (s, n).

- Choose a random line $\ell(X)$ passing through the point $(0, s)$. Note that the equation of the line is $a \cdot X+s$, where a is randomly chosen from \mathbb{F}
- Evaluate the line $\ell(X)$ at $X=1, X=2, \ldots, X=n$ to generate the secret shares $s_{1}, s_{2}, \ldots, s_{n}$. That is, $s_{1}=\ell(X=1), s_{2}=\ell(X=2), \ldots, s_{n}=\ell(X=n)$

The reconstruction algorithm is provided below.
SecretReconstruct ($\left.i_{1}, s^{(1)}, i_{2}, s^{(2)}\right)$.

- Compute the equation of the line

$$
\ell^{\prime}(X):=\frac{s^{(2)}-s^{(1)}}{i_{2}-i_{1}} \cdot X+\left(\frac{i_{2} s^{(1)}-i_{1} s^{(2)}}{i_{2}-i_{1}}\right)
$$

- Let \widetilde{s} be the evaluation of the line $\ell^{\prime}(X)$ at $X=0$. That is, return $\widetilde{s}=\ell^{\prime}(0)=\left(\frac{i_{2} s^{(1)}-i_{1} s^{(2)}}{i_{2}-i_{1}}\right)$.

Example: Shamir's Secret Sharing Scheme (Introduction) IV

Privacy Argument

- Given the share of only one party $\left(i_{1}, s^{(1)}\right)$, there is a unique line passing through the points ($\left.i_{1}, s^{(1)}\right)$ and $(0, \alpha)$, for every $\alpha \in \mathbb{F}$.
- So, all secrets are equally likely from this party's perspective In the future, we will mathematically formalize and prove the italicized statement above

An Illustrative Example I

- Suppose yesterday morning the central authority P gets the secret $s=3$
- And the central authority wants to share the secret among $n=4$ parties
- Note that we can work over $\left(\mathbb{Z}_{p},+, \times\right)$, where $p=5$
- Because $\{1, \ldots, 4\} \subseteq \mathbb{Z}_{p}^{*}$

An Illustrative Example II

Execution of the Secret-sharing Algorithm

- The central authority picks a random line that passes through $(0, s)=(0,3)$
- The equation of such a line looks like

$$
\ell(X)=k \cdot X+3
$$

where k is an element in \mathbb{Z}_{p} chosen uniformly at random

- Suppose it turns out that $k=2$
- Now, the share of the four parties are evaluation of the line $\ell(X)$ at $X=1, X=2, X=3$, and $X=4$.
- So, the secret shares of parties $1,2,3$, and 4 are respectively

$$
\begin{aligned}
& s_{1}=\ell(X=1)=2 \times 1+3=0 \\
& s_{2}=\ell(X=2)=2 \times 2+3=2 \\
& s_{3}=\ell(X=3)=2 \times 3+3=4 \\
& s_{4}=\ell(X=4)=2 \times 4+3=1
\end{aligned}
$$

An Illustrative Example III

- Yesterday, at the end of the day, the central authority provides each party their respective secret share (that is, the central authority provides 0 to party 1,2 to party 2,4 to party 3 , and 1 to party 4)
- Note that the equation of the line $\ell(X)$ is hidden from the parties
- All that the party i knows is that the line $\ell(X)$ passes through the point (i, s_{i})
- After that, the parties $1,2,3$, and 4 part ways and go their own homes

An Illustrative Example IV

Today, let us zoom into party 3's home

- Party 3 has secret share 4
- To find the secret s, party 3 enumerates all lines passing through the point $(3,4)$

$$
\begin{aligned}
\ell_{0}(X) & =0 \cdot X+4 \\
\ell_{1}(X) & =1 \cdot X+1 \\
\ell_{2}(X) & =2 \cdot X+3 \\
\ell_{3}(X) & =3 \cdot X+0 \\
\ell_{4}(X) & =4 \cdot X+2
\end{aligned}
$$

An Illustrative Example V

- Note that the central authority could have picked up any of these lines yesterday
- Note that
- The line ℓ_{0} has intercept 4 on the Y-axis (i.e., the evaluation of the line at $X=0$),
- The line ℓ_{1} has intercept 1 on the Y-axis,
- The line ℓ_{2} has intercept 3 on the Y-axis,
- The line ℓ_{3} has intercept 0 on the Y axis, and
- The line ℓ_{4} has intercept 2 on the Y-axis
- So, it is equally likely that the central authority shared the secret $0,1,2$, 3 , or 4 yesterday

An Illustrative Example VI

Tomorrow, party 3 decides to meet party 1 and they will together work on reconstructing the secret. Their reconstruction steps are provided below.

- Party 1 's secret share is 0 , and party 3 's secret share is 4
- So, the line has to pass through the points $(1,0)$ and $(3,4)$
- The slope of the line is

$$
\begin{aligned}
\frac{4-0}{3-1} & =4 \times(1 / 2) \\
& =4 \times 3, \\
& =2
\end{aligned}
$$

$$
=4 \times 3, \quad \text { because the multiplicative inverse of } 2 \text { is } 3
$$

- So, the equation of the line is of the form

$$
\ell^{\prime}(X)=2 \cdot X+c
$$

- And, at $X=1$ the line evaluates to 0 . So, the line is $\ell^{\prime}(X)=2 \cdot X+3$

An Illustrative Example VII

- Note that the reconstructed line is identical to the line used by the central authority!
- The intercept of the line $\ell^{\prime}(X)$ on the Y-axis is $\widetilde{s}=\ell^{\prime}(X=0)=3$, which is identical to the secret shared by the central authority!

In the next lecture, we will see how to generalize this construction so that we can ensure that any t parties can recover the secret, and no $(t-1)$ parties can recover the secret, where $t \in\{2, \ldots, p-1\}$

