Lecture 02: Mathematical Basics

Outline of the Lecture

- We will see an encryption algorithm called "One-time Pad" for bit-strings and extend its domain to general objects (for example, groups)

One-time Pad I

Yesterday.

- Secret-key Generation: Alice and Bob met and sampled a secret-key sk uniformly at random from the set $\{0,1\}^{n}$, mathematically represented by sk $\sim\{0,1\}^{n}$

Today.

- Goal: Alice wants to send a message $m \in\{0,1\}^{n}$ to Bob over a public channel so that any eavesdropper cannot figure out the message m.
- Encryption: To achieve this goal, Alice computes a ciphertext c that encrypts the message m using the secret-key sk, mathematically represented by $c=\operatorname{Enc}_{\text {sk }}(m):=m \oplus$ sk. Here \oplus represents the bit-wise XOR of the bits of m and $s k$.
- Communication: Alice sends the cipher-text c to Bob over a public channel
- Decryption: Now, Bob wants to decrypt the cipher-text c to recover the message m. Mathematically, this step is represented by $m^{\prime}=\operatorname{Dec}_{\mathrm{sk}}(c):=c \oplus \mathrm{sk}$

One-time Pad II

- Correctness: Note that we will always have $m=m^{\prime}$, i.e., Bob always correctly recovers
- Note that in our case we always have $m=m^{\prime}$
- There are encryption schemes where with a small probability $m \neq m^{\prime}$ is possible, i.e., the encryption scheme is incorrect with a small probability
- Security: Later in the course we shall see how to mathematically prove the following statement.
"An adversary who gets the ciphertext c obtains no additional information about the message m sent by Alice."

One-time Pad III

$$
c=\operatorname{Enc}_{\mathrm{sk}}(m):=m \oplus \mathrm{sk} \text { Alice }
$$

Figure: Pictorial Summary of the One-time Pad Encryption Scheme.

Group

Definition

A group, represented by (G, \circ), is defined by a set G and a binary operator \circ that satisfy the following properties
(1) Closure. For all $a, b \in G$, we have $a \circ b \in G$
(2) Associativity. For all $a, b, c \in G$, we have $(a \circ b) \circ c=a \circ(b \circ c)$
(3) Identity. There exists an element $e \in G$ such that for all $a \in G$, we have $a \circ e=a$
(4) Inverse. For every element $a \in G$, there exists an element $(-a) \in G$ such that $a \circ(-a)=e$

A Quick Check

- Verify that $\left(\{0,1\}^{n}, \oplus\right)$, where \oplus is the bit-wise XOR of bits, is a group
- Closure and Associativity is trivial to verify
- Show that $\overbrace{00 \cdots 0}^{n \text {-times }}$ is the identity
- Show that for $a \in\{0,1\}^{n}$, the inverse of a is a itself

One-time Pad extended to Arbitrary Groups

$$
\begin{array}{l:c}
\text { Alice Bob }
\end{array}
$$

Figure: One-time Pad encryption scheme for the group (G, \circ).

Verify that the scheme is always correct

- Groups can be infinite size. $(\mathbb{Z},+)$, where \mathbb{Z} is the set of all integers and + is integer addition, is a group (Verify that it satisfies all properties of a group)
- Groups can be finite size. $\left(\mathbb{Z}_{n},+\right)$, where $\mathbb{Z}_{n}=\{0, \ldots, n-1\}$ and + is integer addition $\bmod n$, is a group (Verify that it satisfies all properties of a group)

Following are NOT groups. Find which rule is violated.

- (\mathbb{Z}, \times), where \times is the integer multiplication
- $\left(\mathbb{Z}^{*}, \times\right)$, where \mathbb{Z}^{*} is the set of all non-zero integers and \times is the integer multiplication
- (\mathbb{Q}, \times), where \mathbb{Q} is the set of all rationals and \times is rational multiplication
But $\left(\mathbb{Q}^{*}, \times\right)$, where \mathbb{Q}^{*} is the set of all non-zero rationals and \times is rational multiplication, is a group!
- Prove that $\left(\mathbb{Z}_{p}^{*}, \times\right)$ is a group when p is a prime, \times is integer multiplication $\bmod p$, and $\mathbb{Z}_{p}^{*}=\{1, \ldots, p-1\}$
- Prove that $\left(\mathbb{Z}_{n}^{*}, \times\right)$ is NOT a group when n is NOT a prime, \times is integer multiplication $\bmod n$, and $\mathbb{Z}_{n}^{*}=\{1, \ldots, n-1\}$

Examples IV

Groups need not be commutative.

- Define a group that is not commutative. Hint: Matrix Multiplication

Generator I

- Consider the group $\left(\mathbb{Z}_{5},+\right)$
- Note that
- 2 added 0 -times is 0
- 2 added 1 -times is 2
- 2 added 2 -times is 4
- 2 added 3 -times is 1
- 2 added 4 -times is 3
- 2 added 5 -times is 0
- (and so on)
- We say that 2 generates $\left(\mathbb{Z}_{5},+\right)$ because we can generate the entire set \mathbb{Z}_{5} be repeatedly " + "-ing 2 to itself
- Consider the group $\left(\mathbb{Z}_{7}^{*}, \times\right)$. Which elements in \mathbb{Z}_{7} generate the group? And which elements do not generate the group?

Generator II

- We will introduce a shorthand. By a^{k}, we represent the k-times
number $\overbrace{a \circ a \circ \cdots \circ a}$
- We define $a^{0}=e$, the identity of the group

Repeated Squaring Technique

Let g be a generator of a group (G, \circ). Consider the following algorithm.

- Let $n[0]:=g$, the identity of (G, \circ)
- For $i=1$ to k, do the following:
- $n[i]:=n[i-1] \circ n[i-1]$
- At the termination of the algorithm, we have the following $n[0]=g, n[1]=g^{2}, n[2]=g^{4}, \ldots, n[k]=g^{2^{k}}$
- Note that we only used the o operation only k times in this algorithm to generate this sequence
- Let i be an integer in the range $\left\{0, \ldots, 2^{k+1}-1\right\}$
- How to compute g^{i} using $(k+1)$ additional o operations?
- Note: This gives us an algorithm to compute g^{i}, where $i \in\left\{0, \ldots, 2^{k+1}-1\right\}$ using at most $(2 k+1) \circ$ operations!

Definition

A field is defined by a set of elements \mathbb{F}, and two operators + and \cdot. The field $(\mathbb{F},+, \cdot)$ satisfies the following properties
(1) Closure. For all $a, b \in \mathbb{F}$, we have $a+b \in \mathbb{F}$ and $a \cdot b \in \mathbb{F}$
(2) Associativity. For all $a, b, c \in \mathbb{F}$, we have $(a+b)+c=a+(b+c)$ and $a \cdot(b \cdot c)=(a \cdot b) \cdot c$
(3) Commutativity. For all $a, b \in \mathbb{F}$, we have $a+b=b+a$ and $a \cdot b=b \cdot a$
(4) Additive and Multiplicative identities. There exists elements $0 \in \mathbb{F}$ and $1 \in \mathbb{F}$ such that for all $a \in \mathbb{F}$, we have $a+0=a$ and $a \cdot 1=a$
(5) Additive inverse. Every $a \in \mathbb{F}$ has $(-a) \in \mathbb{F}$ such that $a+(-a)=0$
(6) Multiplicative inverse. Every $0 \neq a \in \mathbb{G}$ has $\left(a^{-1}\right) \in \mathbb{F}$ such that $a \cdot\left(a^{-1}\right)=1$
(7) Distributivity. For all $a, b, c \in \mathbb{F}$, we have $a \cdot(b+c)=(a \cdot b)+(a \cdot c)$

Examples

- $\left(\mathbb{Z}_{p},+, \times\right)$ is a field when p is a prime, + is integer addition $\bmod p$, and \times is integer multiplication $\bmod p$
- $(\mathbb{Q},+, \times)$ is a field
- The first example is a finite field, and the second example is an infinite field
- Size of any finite field is p^{n}, where p is a prime and n is a natural number
- Additional Reading: If interested, read about how the fields of size p^{2}, p^{3}, \ldots are defined

