


Outline of the Lecture

@ We will see an encryption algorithm called “One-time Pad" for
bit-strings and extend its domain to general objects (for
example, groups)
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One-time Pad |

Yesterday.

@ Secret-key Generation: Alice and Bob met and sampled a
secret-key sk uniformly at random from the set {0,1}",
mathematically represented by sk ~ {0,1}"

Today.

@ Goal: Alice wants to send a message m € {0,1}" to Bob over a
public channel so that any eavesdropper cannot figure out the
message m.

@ Encryption: To achieve this goal, Alice computes a ciphertext ¢
that encrypts the message m using the secret-key sk,
mathematically represented by ¢ = Ence(m) := m @ sk. Here &
represents the bit-wise XOR of the bits of m and sk.

@ Communication: Alice sends the cipher-text ¢ to Bob over a public
channel

@ Decryption: Now, Bob wants to decrypt the cipher-text ¢ to
recover the message m. Mathematically, this step is represented by
m’ = Decg(c) := c & sk
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One-time Pad Il

o Correctness: Note that we will always have m = n?, i.e., Bob
always correctly recovers
o Note that in our case we always have m = m’
e There are encryption schemes where with a small probability
m # m’ is possible, i.e., the encryption scheme is incorrect
with a small probability

@ Security: Later in the course we shall see how to
mathematically prove the following statement.

“An adversary who gets the ciphertext ¢ obtains no additional
information about the message m sent by Alice.”

Groups and Fields



One-time Pad Il

Alice Bob

sk ~ {0,1}"

/ \

¢ = Encg(m) := m @ sk

m' = Decg(c) := c ® sk

Figure: Pictorial Summary of the One-time Pad Encryption Scheme.
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Group

A group, represented by (G, o), is defined by a set G and a binary
operator o that satisfy the following properties

@ Closure. For all a,b € G, we have aob € G
@ Associativity. For all a, b, c € G, we have
(aob)oc=ao(boc)

© Identity. There exists an element e € G such that for all
a€ G, we have ace=a

© Inverse. For every element a € G, there exists an element
(—a) € G such that ao(—a) =e
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A Quick Check

e Verify that ({0,1}",®), where @ is the bit-wise XOR of bits,
is a group

e Closure and Associativity is trivial to verify
n-times

—
e Show that 00- - -0 is the identity
o Show that for a € {0,1}", the inverse of a is a itself
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One-time Pad extended to Arbitrary Groups

Alice Bob

sk~ G

/ \

¢ = Encg(m) := mosk

m’ = Decg(c) := c o (—sk)

Figure: One-time Pad encryption scheme for the group (G, o).

Verify that the scheme is always correct
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Examples |

@ Groups can be infinite size. (Z,+), where Z is the set of all
integers and + is integer addition, is a group (Verify that it
satisfies all properties of a group)

@ Groups can be finite size. (Z,,+), where Z, = {0,...,n— 1}
and + is integer addition mod n, is a group (Verify that it
satisfies all properties of a group)
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Examples I

Following are NOT groups. Find which rule is violated.
o (Z, x), where X is the integer multiplication

e (Z*, x), where Z* is the set of all non-zero integers and X is
the integer multiplication

e (Q, x), where Q is the set of all rationals and x is rational
multiplication

But (Q*, x), where Q* is the set of all non-zero rationals and x is
rational multiplication, is a group!
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Examples IlI

@ Prove that (Zy, x) is a group when p is a prime, X is integer
multiplication mod p, and Z; = {1,...,p — 1}

e Prove that (Z}, x) is NOT a group when nis NOT a prime, x
is integer multiplication mod n, and Z} = {1,...,n—1}
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Examples IV

Groups need not be commutative.

@ Define a group that is not commutative. Hint: Matrix
Multiplication
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Generator |

e Consider the group (Zs,+)
o Note that

2 added O-times is 0
2 added 1-times is 2
2 added 2-times is 4
2 added 3-times is 1
2 added 4-times is 3
2 added 5-times is 0
(and so on)

e We say that 2 generates (Zs, +) because we can generate the
entire set Zs be repeatedly “+"-ing 2 to itself

o Consider the group (Z3, x). Which elements in Z7 generate
the group? And which elements do not generate the group?
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Generator |l

@ We will introduce a shorthand. By a¥, we represent the
k-times

———
number a0 ao0---04a

o We define a° = e, the identity of the group
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Repeated Squaring Technique

Let g be a generator of a group (G, o). Consider the following
algorithm.

e Let n[0] := g, the identity of (G, o)
@ For i =1 to k, do the following:
o n[i] :=n[i —1]on[i —1]

@ At the termination of the algorithm, we have the following
n[0] = g, n[1] = g% n[2] = g* ..., n[k] = g*

@ Note that we only used the o operation only k times in this
algorithm to generate this sequence

o Let i be an integer in the range {0,...,2k*1 — 1}
@ How to compute g’ using (k + 1) additional o operations?

o Note: This gives us an algorithm to compute g/, where
i €{0,...,2k*1 — 1} using at most (2k + 1) o operations!
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Fields

A field is defined by a set of elements F, and two operators + and -. The field
(F,+, -) satisfies the following properties

© Closure. For all a,b € F, we havea+beFanda-beTF

@ Associativity. For all a,b,c € F, we have (a+ b)+c=a+ (b+ c) and
a-(b-c)=(a-b)-c

© Commutativity. For all a,b € F, we have a+b=b+aanda-b=b-a

@ Additive and Multiplicative identities. There exists elements 0 € IF and
1 € F such that for all a € F, we have a+0=aand a-1=a

© Additive inverse. Every a € F has (—a) € I such that a+ (—a) =0

@ Multiplicative inverse. Every 0 # a € G has (a!) € F such that
a-(a')=1
@ Distributivity. For all a,b,c € F, we have a- (b+c) = (a-b)+(a-c)

v
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Examples

® (Zp,+, x) is a field when p is a prime, + is integer addition
mod p, and X is integer multiplication mod p

e (Q,+, x) is a field

@ The first example is a finite field, and the second example is an
infinite field

@ Size of any finite field is p", where p is a prime and nis a
natural number

o Additional Reading: If interested, read about how the fields of
size p2, p3, ... are defined
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