Homework 3

1. $(10+10$ points $)$ Let DDH assumption hold over the multiplicative group $G=$ $\left\{g^{0}, g, \ldots, g^{|G|-1}\right\}$, where g is a generator for the group.
(a) Prove that the distributions $\left(g, g^{x}, g^{y}, g^{x y}\right) \approx^{(c)}\left(g, g^{x}, g^{y}, g^{z}\right)$, where $x, y, z \stackrel{\$}{\leftarrow}^{\$}$ $\{1, \ldots,|G|-1\}$.
(b) Prove that the distributions $\left(g, g^{x}, g^{y}, g^{x / y}\right) \approx^{(c)}\left(g, g^{x}, g^{y}, g^{z}\right)$, where $x, y, z \leftarrow^{\$}$ $\{1, \ldots,|G|-1\}$. (Here x / y is computed over $\left.\mathbb{Z}_{|G|}^{*}\right)$
2. $\left(10+15\right.$ points) Let $\mathcal{H}=\left\{h^{(i)}: i \in I\right\}$ be a CRHF family, where I is the set of indices for the functions and $h^{(i)}:\{0,1\}^{2 n} \rightarrow\{0,1\}^{n}$.
(a) Define $h^{(2, i)}:\{0,1\}^{4 n} \rightarrow\{0,1\}^{n}$, for $i \in I$, as follows. For an input $x \in\{0,1\}^{4 n}$, interpret it as a concatenation of 4 blocks of n-bit strings $\left(x^{(1)}, x^{(2)}, x^{(3)}, x^{(4)}\right)$. The output $y=h^{(2, i)}(x)$ is defined by

Prove that $\mathcal{H}^{(2)}=\left\{h^{(2, i)}: i \in I\right\}$ is a CRHF family.
(b) Intuitively, the construction above interprets the input as blocks of length n. Then it embeds a balanced binary tree such that the leaves correspond to these input-blocks. At each interior node of the balanced binary tree, the construction applies $h^{(i)}$ to compresses the two incoming inputs. The output of the function is the output of the hash function at the root.
Extend the above intuition to construct $h^{(t, i)}:\{0,1\}^{2^{t} \cdot n} \rightarrow\{0,1\}^{n}$. Prove that $\mathcal{H}^{(t)}=\left\{h^{(t, i)}: i \in I\right\}$ is a CRHF family. For this problem interpret t as an constant integer $\geqslant 2$.
3. (25 points) Let $\mathcal{H}=\left\{h^{(i)}: i \in I\right\}$ is a universal one-way hash function (UOWHF) family if $h^{(i)}:\{0,1\}^{2 n} \rightarrow\{0,1\}^{n}$, for all $i \in I$, and the following definition holds.

For an arbitrary efficient adversary \mathcal{A} the following is true:
(a) The adversary \mathcal{A} sends $x \in\{0,1\}^{2 n}$
(b) The honest challenger \mathcal{H} picks $i \in I$ and sends $h^{(i)}$ to the adversary \mathcal{A}
(c) The adversary \mathcal{A} replies with $x^{\prime} \in\{0,1\}^{2 n}$
(d) The honest challenger outputs $z=1$ if $h^{(i)}(x)=h^{(i)}\left(x^{\prime}\right)$

We have $\operatorname{Pr}[z=1] \leqslant \operatorname{neg}(n)$ in the above experiment.
Define $h^{(2, i, j)}:\{0,1\}^{4 n} \rightarrow\{0,1\}^{n}$, for $i, j \in I$, as follows. For an input $x \in\{0,1\}^{4 n}$, interpret it as a concatenation of 4 blocks of n-bit strings $\left(x^{(1)}, x^{(2)}, x^{(3)}, x^{(4)}\right)$. The output $y=h^{(2, i, j)}(x)$ is defined by

Prove that $\mathcal{H}^{(2)}=\left\{h^{(2, i, j)}: i, j \in I\right\}$ is a UOWHF family.

