Homework 2

1. ($10+10$ points) Let $G_{n, \ell}:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell}$ and $H_{n, \ell}:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell}$ be efficient functions.
(a) Consider the construction $J_{n, \ell}:\{0,1\}^{2 n} \rightarrow\{0,1\}^{\ell}$ defined by $J_{n, \ell}\left(s^{(1)}, s^{(2)}\right)=$ $G_{n, \ell}\left(s^{(1)}\right) \oplus H_{n, \ell}\left(s^{(2)}\right)$. Prove or disprove that $J_{n, \ell}$ is also a PRG, if $G_{n, \ell}$ or $H_{n, \ell}$ are PRGs and $\ell>2 n$.
(b) Consider the construction $K_{n, \ell}:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell}$ defined by $K_{n, \ell}(s)=G_{n, \ell}(s) \oplus$ $H_{n, \ell}(s)$. Prove or disprove that $K_{n, \ell}$ a PRG, if $G_{n, \ell}$ and $H_{n, \ell}$ are both PRGs.
2. ($10+10$ points) Suppose $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a one-way function. Prove or disprove whether the following functions are also one-way functions.
(a) Let $g:\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ be defined as follows: $g(x)=(f(x), f(x))$.
(b) Let $h:\{0,1\}^{2 n} \rightarrow\{0,1\}^{2 n}$ be defined as follows: $h\left(x^{(1)}, x^{(2)}\right)=\left(f\left(x^{(1)}\right), f\left(x^{(2)}\right)\right)$.
3. (10 points + Extra Credit) In this problem we will define "slightly" one-way functions. Let $g:\{0,1\}^{n^{\prime}} \rightarrow\{0,1\}^{n^{\prime}}$ be a function that is easy to compute but any arbitrary efficient adversary can invert the function for at most an ε-fraction of the inputs. Such a function g is called ε-easy. Define slightly one-way functions that captures this intuition.

- (Extra Credit) Given an ε-easy function, for a constant $\varepsilon>0$, provide a construction for one-way functions.

