Homework 1

1. ($10+10+5$ points) Let $\Omega_{n, k}$ be the experiment where we sample k balls numbered $\{1,2, \ldots, n\}$ (with replacement) uniformly and independently at random. Given a sample of k balls, we say that a collision has occurred if there exist two balls with identical numbers in this sample. Let $p(n, k)$ represent the probability that no collisions have occurred when a sample is drawn in the experiment $\Omega_{n, k}$.
(a) Plot $p(n, k)$ for $k=1, \ldots, n$, where $n=100$. The X -axis should represent k and the Y -axis should represent $p(n, k)$. Using this graph, find the value k_{0} such that k_{0} is the largest value with $p\left(n, k_{0}\right) \geqslant 0.99$, and the value k_{1} such that k_{1} is the smallest value with $p\left(n, k_{1}\right) \leqslant 0.01$.
(b) Perform the same experiment as above with $n=10,000$.
(c) Find the values of k_{0}^{2} / n and k_{1}^{2} / n in the above two experiments.
(Hint: Use arbitrary precision arithmetic of sage to perform the probability computations and to obtain the data. Next, use the tikz package to plot this data in LATEX.)
2. $(15+10$ points) We consider a new definition of security for encryption schemes.
(a) Formally describe a security experiment where an adversary gets to choose two messages $m^{(0)}, m^{(1)}$ of its choice. The honest challenger picks a uniformly random bit $b \stackrel{\oiint}{\leftarrow}\{0,1\}$, and samples sk $\sim \operatorname{Gen}\left(1^{\lambda}\right)$, where λ is the length of the messages being encrypted. Next, the honest challenger picks a random message $m \stackrel{\&}{\leftarrow} \mathcal{M}$, and samples $c \sim \operatorname{Enc}_{\text {sk }}\left(m^{(b)}\right)$ and $d \sim \operatorname{Enc}_{\text {sk }}(m)$. The honest challenger sends (c, m, d) to the adversary and asks it to predict the bit b.
(b) Show that the one-time pad encryption scheme is completely insecure for this definition. What is the advantage that you are able to obtain?
