

Secret Sharing

Dr. Aniket Kate Purdue University

- In secure systems, an authority is often required to
 - protect some secret, and
 - employ the secret in a manner defined by the system

- In secure systems, an authority is often required to
 - protect some secret, and
 - employ the secret in a manner defined by the system

- In secure systems, an authority is often required to
 - protect some secret, and
 - employ the secret in a manner defined by the system

- In secure systems, an authority is often required to
 - protect some secret, and
 - employ the secret in a manner defined by the system

- In secure systems, an authority is often required to
 - protect some secret, and
 - employ the secret in a manner defined by the system
- How to realize such a trusted party?

- In secure systems, an authority is often required to
 - protect some secret, and
 - employ the secret in a manner defined by the system
- How to realize such a trusted party?
 - Find such an individual/group/organization, and justify their trustworthiness

- In secure systems, an authority is often required to
 - protect some secret, and
 - employ the secret in a manner defined by the system
- How to realize such a trusted party?
 - Find such an individual/group/organizatic and justify their trustworthiness

- In secure systems, an authority is often required to
 - protect some secret, and
 - employ the secret in a manner defined by the system
- How to realize such a trusted party?
 - Find such an individual/group/organizatic and justify their trustworthiness
 - Use multi-party computation (MPC) or a distributed authority

- In secure systems, an authority is often required to
 - protect some secret, and
 - employ the secret in a manner defined by the system
- How to realize such a trusted party?
 - Find such an individual/group/organizatic and justify their trustworthiness
 - Use multi-party computation (MPC) or a distributed authority

- In secure systems, an authority is often required to
 - protect some secret, and
 - employ the secret in a manner defined by the system
- How to realize such a trusted party?
 - Find such an individual/group/organizatic and justify their trustworthiness
 - Use multi-party computation (MPC) or a distributed authority

- In secure systems, an authority is often required to
 - protect some secret, and
 - employ the secret in a manner defined by the system
- How to realize such a trusted party?
 - Find such an individual/group/organizatic and justify their trustworthiness
 - Use multi-party computation (MPC) or a distributed authority
 - Employ a trusted hardware module that performs cryptographic operations

- In secure systems, an authority is often required to
 - protect some secret, and
 - employ the secret in a manner defined by the system
- How to realize such a trusted party?
 - Find such an individual/group/organizatic and justify their trustworthiness
 - Use multi-party computation (MPC) or a distributed authority
 - Employ a trusted hardware module that performs cryptographic operations

Secret Sharing

- The notion of secret sharing was introduced independently by Shamir and Blakley in 1979
- For integers n and t such that n > t >= 0, an (n,t)-secret sharing (SS) scheme is a method used by a dealer D
 - to share a secret s among a set of n parties (the sharing phase) in such a way that
 - in the reconstruction phase any subset of t+1 or more parties can compute s, but subsets of size t or fewer cannot
- What is the relation between n and t
 - against a passive adversary controlling any t parties?
 - against an active adversary controlling any t parties?

Secret Sharing Basics

Sharing Phase

Secret Sharing Basics

Reconstruction Phase

Shamir Secret Sharing

- Shamir's secret sharing based on polynomial evaluations and Lagrange interpolation is the standard SS scheme
- To share a secret s $\in F_p$ along n < p players, the dealer D
 - chooses a degree-t polynomial
 f_D(x) = s + r₁x + r₂x² + ... + r_tx^t, for coefficients r_i ∈ F_p chosen uniformly at random
 - computes and send $y_i = f(i)$ to ith node/party; share $s_i = (i, y_i)$
 - We represent the output of sharing phase as [s]
- Any subset Q of t+1 or more players, can reconstruct the secret s as $s = \sum_{i \in Q} \lambda_i y_i$, where $\lambda_i = \prod_{j \in Q} \sum_{i \in Q} \frac{j}{j-i}$

This secret sharing is additive homomorphic

Example: (4,1)-Secret Sharing

Shamir Secret Sharing Examples

(n,1)-secret sharing
 (n,2)-secret sharing

Attacks on Secret Sharing

Attacking Secrecy/Privacy

Attacking Correctness

Bounding Adversary Behavior

- What is the relation between n and t
 - against a passive adversary controlling any t parties?
 - against an active adversary controlling any t parties?

(Discussion on the board)

- What if the dealer is malicious?
 - Example Scenarios: Multi-party Computations; Threshold Cryptography

Attacks on Secret Sharing

Attacking Commitment

Verifiable Secret Sharing

- Secret sharing with three properties
 - Secrecy
 - Correctness
 - Commitment

(Discussion on the board)