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Privacy in Statistical Databases

Individuals Server/agency Users

i— X . queries Government,
X2 — researchers,

businesses
answers
> (or)

Malicious
adversary

),

® What information can be released?
® “wo conflicting goals
>Uti|ity:Users can extract ‘global” statistics
>Privacy: Individual information stays hidden
® How can these be made precise!

>(How context-dependent must they be?)




Why not use crypto definitions!?

o Cryptography successfully defined concepts
such as

>encryption

> secure function evaluation

e Recall encryption:

> “Semantic Security”: For any function f,distribution on messages and
efficient algorithm A, there exists an efficient algorithm A’ such that:

Pr[A(PK, Encpxk(m)) =f (m)] < Pr[A'(PK) =f(m)] + E

>“Indistinguishability”: For any message m,no efficient adversary can
tell apart encryptions of m and a default message:

Encpk (0)

>Adversary’s information quantified precisely

> Encryption must be randomized Encpk(m)




Encryption: Real vs Ideal worlds

« Real world:Alice sends Bob encryption of 100-bit

message m, adversary sees ciphertext

« ldeal world:Alice tells adversary “l am sending Boba

message of 100 bits” and nothing else.

o How can you“simulate” the ideal world,i.e.make the

ideal world look like the real word?

> Have Alice send encryption of 0100 = 000000...0

100 zeros

o No adversary can tell the real world from the simulation,

and clearly the simulation leaks no information about m!




Notes about these definitions

* Security is a property of the algorithm used for

encryption

» You can’t point at a particular string and say it is “secure”
« Adversary’s information and abilities quantified precisely
« Because we allow adversary side information about the

message, all the security resides in the secret keyand

randomness used for encryption




a.k.a.“multi-party

Secure Function Evaluation

computation”
« Several parties, each with input x,want to compute a

function f(x;,X,,...,X.)

Ideal world: all parties hand their inputs to a trusted
party who computes f(x|,....x ) and releases the result
There exist secure protocols for this task

» ldea: a simulator can geneerate a dummy transcript given only

the value of f

Privacy: use SFE protocols to jointly data mine

> Horizontal vs vertical

» Lots of papers (see optional topics)
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Why not use crypto definitions!?

o Attempt #1:

» Def’n: For every entry i, no information about x. is leaked
(as if encrypted)
» Problem: no information at all is revealed!

» Tradeoff privacy vs utility
o Attempt #2:

» Agree on summary statistics f(DB) that are safe
» Def’'n: No information except f(DB)
» Problem:why is f(DB) safe to release?

» Tautology trap
» (Also: how do you figure out what f is?)
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Why not use crypto definitions!?

e Problem: Crypto makes sense in settings where the line
between“inside” and“outside” is well-defined
» E.g.psychologist:
* “inside” = psychologist and patient

* “outside” = everyone else

o Statistical databases: fuzzy line between inside and
outside




A Problem Case

Question 1. How many people in this room have cancer?

Question 2: How many students in this room have
cancer?

The difference (A1-A2) exposes my answer!




Achieving Differential Privacy

* Examples

* Intuitions for privacy
» Why crypto def’s don’t apply
A Partial* Selection of Definitions
» Two straw men
» Attribute Disclosure and Differential Privacy

Conclusions

*“partial” = “incomplete” and “biased”
10




Achieving Differential Privacy

e Examples Criteria

e Understandable
* Intuitions for privacy e Clear adversary’s goals &

prior knowledge / side information
» Why crypto def’s dont app

* A Partial¥Selection of Definitions
> Two straw men
» Attribute Disclosure and Differential Privacy

Conclusions

*“partial” = “incomplete” and “biased”
10




Straw Man #0

Omit
data

1€

Robust De-anonymization of Large Sparse Datasets

Arvind Narayanan and Vitaly Shmatikov

The University of Texas at Austin

Abstract

We present a aew class of satistical  de-
anonymization  aftacks  against  high-dimensional
micro-data, such as individual preferences, recommen-
dations, tranzaction records and so on. Chr lechnigues
are robust fo perturbation in the data and tolerale some

e T

We apply our de-anoaymization methodology o the
Nelflix Prize datasei, which confaings anonvmous movie
ratings of 500,000 subscribers of Netfiix, the world’s
largest online movie rental service. We demonstrate
that an adversary who knows only a little bil aboui
an individual subscriber can easily identify this sab-
scriber’s record in the dataset.  Using the Iaternet
Movie Database as the source of background knowl-
edge, we successfully identified the Neiflix records of
known users, uncovering their apparent political pref-
erences and other potentially sensitive information.

de-anonymization algorithms, demonstrating the funda-

and sparsity. Each record contains many attributes (i.e.,
columns in a database schema), which can be viewed as
dimensions. Sparsity means that for the average record,
there are no “similar™ records in the multi-dimensional

space defined by the attributes. This sparsity is empir-

ically v
tail™ pl
record

Our ¢
madel
(sectio
probak
the am
Unlike
ori tha
set of °N
compasses a much broader class of de-anonymization
attacks than simple cross-database correlation.

Our second contribution is a very general class of



Straw man #1: Exact Disclosure

random coins

query
anlswerl
M
query
anlswerT Adversary A
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Straw man #1: Exact Disclosure

Adversary A

e Def’n: safe if adversary cannot learn any entry exactly

> leads to nice (but hard) combinatorial problems

» Does not preclude learning value with 99% certainty or narrowing down
to a small interval
e Historically:
» Focus: auditing interactive queries
» Difficulty: understanding relationships between queries

» E.g.two queries with small difference




Two Intuitions for Data Privacy

o “If the release of statistics S makes it possible to
determine the value [of private information] more
accurately than is possible without access to $,a

disclosure has taken place.” [Dalenius]

» Learning more about me should be hard

e Privacy is “protection from being brought to the

attention of others.” [Gavison]

» Safety is blending into a crowd




A Problem Example!?

Suppose adversary knows that | smoke.

Question 0: How many patients smoke?

Questionl: How many smokers have cancer?

Question 2: How many patients have cancer?

If adversary learns that smoking = cancer then he learns
my health status.

Privacy Violation?



Preventing Attribute Disclosure

Adversary A

* Large class of definitions

> safe if adversary can’t learn “too much” about any entry
> E.g.:
e Cannot narrow X; down to small interval

 For uniform X;,mutual information 1(X;;San(DB) ) - ¢

* How can we decide among these definitions!?




Differential Privacy

Adversary A

e Lithuanians example:
» Adv.learns height even ifAlice not in DB
* [ntuition [DM]:

> “Whatever is learned would be learned regardless of whether or notAlice

participates”

» Dual:Whatever is already known, situation won’t get worse




Approach: Indistinguishability
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Approach: Indistinguishability

( queries

ANSWErs

local random
coins

A

ANsSwWers
>

local random
coins

X’ is a neighbor of x
if they differ in one row

for all neighbors x,x’,
for all subsets S of transcripts

Definition: A is indistinguishable if,

Neighboring databases
induce close distributions
on transcripts

PrIA(X) €S] < (1 + e)Pr[A(x)) €S]




Approach: Indistinguishability

* Note that € has to be non-negligible here

» Triangle inequality: any pair of databases at distance <gn

» If e < 1/n then users get no info!

*  Why this measure!
> Statistical difference doesn’t make sense with & > 1/n
» E.g.choose random i and release i, x;

» This compromises someone’s privacy w.p. 1

Neighboring databases
induce close distributions
on transcripts

Definition: A is indistinguishable if,
for all neighbors x,x’,

for all subsets S of transcripts

PrIA(X) €S] < (1 + e)Pr[A(x)) €S]




Differential Privacy

e Another interpretation [DM]:

You learn the same things about me
regardless of whether | am in the database

e Suppose you know | am the height of median Canadian

> You could learn my height from database!
But it didn’t matter whether or not my data was part of it.

> Has my privacy been compromised? No!

Definition: A is indistinguishable if,
for all neighbors x,x’,
for all subsets S of transcripts

Neighboring databases
induce close distributions
on transcripts

PrIA(X) €S] < (1 + e)Pr[A(x)) €S]




Graphs: Edge Adjacency
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Graphs: Edge Adjacency
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Johnny’s mom does not learn if he watched
Saw from the output A(G).
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Privacy for Two Edges!?
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Limitations

Johnny’s mom may now be able tell if he
watches R-rated movies from A(G).

72



Output Perturbation

Individuals Server/agency

i~ XI (4§ b3
X5 ' I Il me f(x)
: A f(x) +noise User
>

local random
coins

Intuition: f(x) can be released accurately when f

is insensitive to individual entries X1, Xe, ..., Xn




Global Sensitivity
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Global Sensitivity

AQ = max|Q(G¢) — Q(G)

G~GY

What does G~G’ mean?
Example: Change one attribute

Q,(G) = #users who watched Lion King

AQy =7



Global Sensitivity

AQ = max|Q(6) — Q(G")
e What does G~G’ mean?

e Example: Add/delete one row?



Global Sensitivity

AQ = max|Q(G) — Q(G")|

e Example: Add/delete one row?
* Q(G) = Q1(G)+Q2(G)
e AQ =7



Traditional Differential Privacy Mechanism

Fact: The Laplacian Mechanism:

AQ
A(G) = Q(6) +Lap (— ).
satisfies (&, 0)-differential privacy.

81




Traditional Differential Privacy Mechanism

PDF(x) « e~lx¢l

PDF .(x ) o« e~ l(x—1el

AQ=1
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Traditional Differential Privacy Mechanism

PDF;(x) e X B
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Traditional Mechanism #2

Fact: The Gaussian mechanism preserves
(g, 6)-differential privacy
2 (AQ)2108(1'25/5)>

c2

A(G) =Q(G)+N (0,

1
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Differential Privacy

an‘swerl
M
query
anlswerT Adversary A

random coins
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Examples of low global sensitivity

* Example: GSaverage = i if x €[0,1]"

> Add noise Lap( L)

» Comparison: to estimate a frequency (e.g.proportion of
diabetics) in underlying population, get sampling noise \f—
n

* Many natural functions have low GS,e.g.:
» Histograms and contingency tables
» Covariance matrix
» Distance to a property

» Functions that can be approximated from a random sample

e [BDMN] Many data-mining and learning algorithms access the
data via a sequence of low-sensitivity questions

» e.g.perceptron,some “EM” algorithms,SQ learning algorithms




Why does this help!?

With relatively little noise:

« Averages

« Contingency tables

e Matrix decompositions

* Certain types of clustering




Differential Privacy
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Differential Privacy

Protocols
e Output perturbation

(Release f(x) + noise)

> Sum queries
« [DiN’03,DwN’04,BDMN’05]

>“Sensitivity” frameworks
. [DMNS’06,NRS'07]
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Differential Privacy

Protocols

o Output perturbation

(Release f(x) + noise)

> Sum queries
- [DiN’03,DwN’04,BDMN’05]

> “Sensitivity” frameworks
 [DMNS’06,NRS’07]

 Input perturbation
(“randomized response”)

>Frequent item sets [EGS’03]

>(Various learning results)

Lower bounds
* Limits on communication

models

> Noninteractive [DMNS'06]
> “Local” [NSW'07]

e Limits on accuracy
>“Many” good
answers allow

reconstructing
database

* [DiNi’'03,DMT’07]




Differential Privacy

Protocols

o Output perturbation

(Release f(x) + noise)

> Sum queries
- [DiN’03,DwN’04,BDMN’05]
> “Sensitivity” frameworks
 [DMNS’06,NRS’07]

 Input perturbation
(“randomized response”)

>Frequent item sets [EGS’03]

>(Various learning results)

Lower bounds

e Limits on communication

models

» Noninteractive [DMNS'06]
> “Local” [NSW'07]

e Limits on accuracy

> “Many” good answers
allow reconstructing
database

» [DiNi’'03,DMT’07]
« Necessity of ‘differential”
guarantees [DN]




Resources

—

Free PDF:
https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf



https://www.cis.upenn.edu/%7Eaaroth/Papers/privacybook.pdf
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