Lecture 18: Message Authentication Codes \& Digital Signatures

MACs and Signatures

- Both are used to assert that a message has indeed been generated by a party
- MAC is the private-key version and Signatures are public-key version
- Note: Message hiding is not part of the (intuitive) security requirements

Message Authentication Codes

- Defined by (Gen, Tag, Ver) algorithms
- The signer and the verifier meet to generate a secret key sk $\sim \operatorname{Gen}\left(1^{n}\right)$
- The signer sends a message $m \in\{0,1\}^{n}$ along with a tag $\tau \sim \operatorname{Tag}_{\text {sk }}(m)$ (Note that the tag generation algorithm can be randomized)
- The verifier, upon receiving ($\widetilde{m}, \widetilde{\tau}$) verifies using $\operatorname{Ver}_{\text {sk }}(\widetilde{m}, \widetilde{\tau}) \in\{0,1\}$

Correctness and Security

- Correctness: For any message $m \in\{0,1\}^{n}$,

$$
\operatorname{Pr}\left[\operatorname{sk} \sim \operatorname{Gen}\left(1^{n}\right): \operatorname{Ver}_{\text {sk }}\left(m, \operatorname{Tag}_{\text {sk }}(m)\right)=1\right]=1
$$

- Security: For any adversary \mathcal{A} the following holds

$$
\operatorname{Pr}\left[\operatorname{sk} \sim \operatorname{Gen}\left(1^{n}\right): \begin{array}{c}
\mathcal{A}^{\operatorname{Tag}_{\text {sk }}(\cdot)}=\left(m^{\prime}, \tau^{\prime}\right) \wedge \\
m^{\prime} \notin Q \wedge \operatorname{Ver}_{\mathrm{sk}}\left(m^{\prime}, \tau^{\prime}\right)=1
\end{array}\right] \leqslant \operatorname{negl}(n),
$$

where Q is the set of all queries made to the tagging oracle $\operatorname{Tag}_{\text {sk }}(\cdot)$ by the adversary \mathcal{A}

- Note: If the security is restricted to $|Q|=k$, then it is called a k-time secure MAC

1-time MAC

- Computational assumptions are not necessary for MACs
- Consider the following construction of 1-time MAC
- Gen $\left(1^{n}\right)$ samples $r^{(b, i)} \stackrel{\leftarrow}{\leftarrow}\{0,1\}^{k}$, where $b \in\{0,1\}$ and $i \in[n]$, and outputs:

$$
\mathrm{sk}=\left(\begin{array}{llllll}
r^{(0,1)} & r^{(0,2)} & \cdots & r^{(0, i)} & \cdots & r^{(0, n)} \\
r^{(1,1)} & r^{(1,2)} & \cdots & r^{(1, i)} & \cdots & r^{(1, n)}
\end{array}\right)
$$

- $\mathrm{Tag}_{\text {sk }}(m)$ outputs

$$
\tau=r^{\left(m_{\mathbf{1}}, 1\right)} r^{\left(m_{\mathbf{2}}, 2\right)} \ldots r^{\left(m_{n}, n\right)}
$$

- $\operatorname{Ver}_{\text {sk }}(\widetilde{m}, \widetilde{\tau})$ outputs 1 if and only if all the following tests pass:

$$
r^{\left(\widetilde{m}_{i}, i\right)}=\widetilde{\tau}_{i}
$$

Proof of Security

- Suppose an adversary \mathcal{A} queries the tagging oracle at $m^{(1)}$ and gets outputs $\tau^{(1)}$
- Then it outputs $\left(m^{\prime}, \tau^{\prime}\right)$, where $m^{\prime} \neq m^{(1)}$
- If $m^{\prime} \neq m^{(1)}$ then there exists i such that $m_{i}^{\prime} \neq m_{i}^{(1)}$
- So, the probability that $\left(m^{\prime}, \tau^{\prime}\right)$ is a valid signature is at most the probability of guessing $r^{\left(m_{i}^{\prime}, i\right)}$, which is at most 2^{-k}
- So, for $k=\omega(\log n)$ this is a secure 1-time MAC scheme

(poly-time) MAC using One-way Functions

- We will construct it using Pseudo-Random Functions (PRFs) and we already know that PRFs can be constructed from OWFs
- Suppose $\left\{f_{1}, \ldots, f_{k(n)}\right\}$ is a PRF family
- Consider the following scheme:
- Gen $\left(1^{n}\right)$ samples sk $\stackrel{\S}{\leftarrow}\{1, \ldots, K(n)\}$
- $\operatorname{Tag}_{\text {sk }}(m)=f_{\text {sk }}(m)$
- $\operatorname{Ver}_{\text {sk }}(\widetilde{m}, \widetilde{\tau})=1$ if and only if $f_{\text {sk }}(\widetilde{m})=\widetilde{\tau}$
- Use the intuition to prove its security:
- PRF family is computationally indistinguishable from the family of random functions
- Given evaluation of a random function at some points Q, it is impossible to predict the output of the function at $m^{\prime} \neq Q$

Digital Signatures

- Defined by (Gen, Sign, Ver) algorithms
- Correctness:

$$
\operatorname{Pr}\left[(\mathrm{sk}, \mathrm{pk}) \sim \operatorname{Gen}\left(1^{n}\right): \operatorname{Ver}_{\mathrm{pk}}\left(m, \operatorname{Sign}_{\mathrm{sk}}(m)\right)=1\right]=1
$$

- Security:

$$
\operatorname{Pr}\left[(\mathrm{sk}, \mathrm{pk}) \sim \operatorname{Gen}\left(1^{n}\right): \begin{array}{l}
\mathcal{A}^{\text {Sign }} \mathrm{sk}(\cdot) \\
\left.m^{\prime} \notin Q \wedge\right)=\left(m^{\prime}, \sigma^{\prime}\right) \wedge \\
\operatorname{Ver}_{\mathrm{pk}}\left(m^{\prime}, \sigma^{\prime}\right)=1
\end{array}\right] \leqslant \operatorname{negl}(n)
$$

1-time Digital Signatures using OWF: Lamport Scheme

- Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a OWF
- Gen $\left(1^{n}\right)$ samples $r^{(b, i)} \stackrel{\Phi}{\leftarrow}\{0,1\}^{n}$, for $b \in\{0,1\}$ and $i \in\{1, \ldots, n\}$ and computes $y^{(b, i)}=f\left(r^{(b, i)}\right)$. Output

$$
\begin{aligned}
\text { sk } & =\binom{r^{(0,1)} \ldots r^{(0, i)} \ldots r^{(0, n)}}{r^{(1,1)} \ldots r^{(1, i)} \ldots r^{(1, n)}} \\
\operatorname{pk} & =\binom{y^{(0,1)} \ldots y^{(0, i)} \ldots y^{(0, n)}}{y^{(1,1)} \ldots y^{(1, i)} \ldots y^{(1, n)}}
\end{aligned}
$$

- $\operatorname{Enc}_{\text {sk }}(m)$ outputs $\sigma=r^{\left(m_{1}, 1\right)} \ldots r^{\left(m_{n}, n\right)}$
- $\operatorname{Ver}_{\mathrm{pk}}(\widetilde{m}, \widetilde{\sigma})$ outputs 1 if and only if all the following tests pass

$$
y^{\left(\widetilde{m}_{i}, i\right)}=f\left(\widetilde{\sigma}_{i}\right), \text { where }
$$

Security Proof

- Suppose \mathcal{A}^{*} breaks the Lamport Scheme with probability ε
- Following is the code of $\widetilde{\mathcal{A}}$ on input y :
- Prepare sk and pk of Lamport Scheme
- Pick random $i^{*} \stackrel{\Phi}{\leftarrow}[n]$ and $b^{*} \stackrel{\$}{\longleftarrow}_{\leftarrow}\{0,1\}$
- Replace $y^{\left(i^{*}, b^{*}\right)}$ by y in the public-key pk
- Send pk to \mathcal{A}^{*}
- Receive m from \mathcal{A}^{*}
- If $b^{*}=m_{i^{*}}$, then stop executing \mathcal{A}^{*} and return 0 to the external honest challenger of OWF experiment (this corresponds to the case where we need to know an inverse of y to prepare the signature of m)
- Otherwise, generate the signature σ on m using the secret key sk
- Obtain $\left(m^{\prime}, \sigma^{\prime}\right)$ from \mathcal{A}^{*}
- If $\left(m^{\prime}, \sigma^{\prime}\right)$ is not a valid message and signature pair, then return 0 to the external honest challenger of OWF experiment (this corresponds to the case that the adversary \mathcal{A}^{*} failed to produce a forgery)
- Otherwise, if $b^{*}=m_{i^{*}}^{\prime}$, i.e. \mathcal{A}^{*} has helped us invert y (think why this is the case), then return $\sigma_{i^{*}}^{\prime}$ (This is the inverse of y)

Security Proof

Note that we succeed if we satisfy the following conditions:

- $b^{*}=m_{i^{*}}^{\prime}$ but $b^{*} \neq m_{i^{*}}$
- \mathcal{A}^{*} successfully breaks the signature scheme.

Conditioned on \mathcal{A}^{*} successfully breaking the signature scheme, the probability that random $\left(i^{*}, b^{*}\right)$ satisfy the first condition is $1 / 2 n$. So, overall probability of successfully inverting the OWF f is $\varepsilon / 2 n$

General Signatures

Think \& Read about the following:

- Signing Arbitrary length messages: Use CRHF family that hash arbitrary length messages (Merkle-Damgård Construction) and the "Hash-then-sign" Paradigm
- Signatures where an adversary can ask for arbitrary-polynomial number of signatures of messages of its choice

