Lecture 17: CRHF \& Merkle-Damgård Construction

- Collision-resistant Hash Function family from domain \mathcal{D} to range \mathcal{R} is a set of hash functions

$$
\mathcal{H}=\left\{h^{(i)}: i \in \mathcal{I}\right\},
$$

where \mathcal{I} is the set of indices and each function $h^{(i)}: \mathcal{D} \rightarrow \mathcal{R}$

- Any efficient adversary given $h^{(i)}$, where $i \stackrel{\S}{\leftarrow} \mathcal{I}$, can output $x, x^{\prime} \in \mathcal{D}$ such that $h^{(i)}(x)=h^{(i)}\left(x^{\prime}\right)$ only with negligible probability
- One bit compressing (i.e., $|\mathcal{D}|=2|\mathcal{R}|$) can be constructed from the hardness of the discrete logarithm assumption as follows. Let the discrete logarithm problem be hard in the group G, then for $b \in\{0,1\}$ and $x \in \mathbb{Z}_{|G|}$, we have:

$$
\begin{aligned}
& h^{(y)}:\{0,1\} \times \mathbb{Z}_{|G|} \rightarrow G \\
& h^{(y)}(b, x)=y^{b} g^{x} \\
& \mathcal{H}=\left\{h^{(y)}: y \in G\right\}
\end{aligned}
$$

We can construct a t-bit compression function as follows: Let $b \in\{0,1\}^{t}$ and $y^{(1)}, \ldots, y^{(t)} \in \mathbb{Z}_{|G|}$.

$$
h^{\left(y^{(1)}, \ldots, y^{(t)}\right)}(b, x)=y^{(1)^{b_{1}}} \cdots y^{(t)^{b_{t}}} g^{x}
$$

Each function is indexed by $\left(y^{(1)}, \ldots, y^{(t)}\right)$ and each $y^{(i)} \in\{0,1\}^{n}$. So, index size is tn.

- Prove: If Discrete Logarithm assumption holds in G then the construction above is a CRHF, where $t=\operatorname{poly}(n)$
- Prove: If $\mathcal{H}^{(n)}$ is a CRHF family with functions $\{0,1\}^{n+1} \rightarrow\{0,1\}^{n}$, for all large enough n, then the construction above is a CRHF family, where $t=\operatorname{poly}(n)$
- Think: What is the difference between the above two theorems

Length-Halving CRHF

- In particular, with $t=n$ and $G=\{0,1\}^{n}$, the previously constructed function is a length halving family of hash functions where all functions are $\{0,1\}^{2 n} \rightarrow\{0,1\}^{n}$
- We are interested in hashing $\{0,1\}^{\text {tn }}$ down to $\{0,1\}^{n}$
- One-bit compression at a time needs $(t-1) n \times n$ size indices. Can we do better?
- Let \mathcal{H} be a CRHF family with functions $\{0,1\}^{2 n} \rightarrow\{0,1\}^{n}$ and key size K
- We will construct CRHF family $\mathcal{H}^{(t)}$ with functions $\{0,1\}^{t n} \rightarrow\{0,1\}^{n}$ and key size K, for $t \geqslant 2$
- Let $x \in\{0,1\}^{\text {tn }}$ be represented as $\left(x^{(1)}, \ldots, x^{(t)}\right)$, where each $x^{(i)} \in\{0,1\}^{n}$. The function is calculated in an iterated fashion as represented below. Each box represents an application of a function $h \in \mathcal{H}$ and the output of the hash function is y. Call this new function $\operatorname{itr}_{t}(h)$ function. So, we have $\mathcal{H}^{(t)}=\left\{\operatorname{itr}_{t}(h): h \in \mathcal{H}\right\}$.

- Our adversary $\widetilde{\mathcal{A}}$ on input a hash function h feeds $\operatorname{itr}_{t}(h)$ function to \mathcal{A}^{*}
- Suppose \mathcal{A}^{*} produces $x=\left(x^{(1)}, \ldots, x^{(t)}\right)$ and $z=\left(z^{(1)}, \ldots, z^{(t)}\right)$ such that it is a collision of the function $\operatorname{itr}_{t}(h)$ function
- Suppose the input to the last h-box in the evaluation of $\operatorname{itr}_{t}(h)(x)$ is a and the input to the last h-box in the evaluation of $\operatorname{itr}_{t}(h)(z)$ is b. We know that the output of the last h-box is same in these two cases. If $a \neq b$, then we have found a collision.
- If $a=b$, then the output of the second last h-box is identical in $\operatorname{itr}_{t}(h)(x)$ and $\operatorname{itr}_{t}(h)(z)$ evaluation. Therefore, we can recurse on $\left(x^{(1)}, \ldots, x^{(t-1)}\right)$ and $\left(z^{(1)}, \ldots, z^{(1)} t-1\right)$ that also produce a collision (i.e. the output of the second last h-box)

