Lecture 16: Public-key Encryption and Collision-Resistant Hash Functions
The receiver broadcasts $pk = g^x$, where $x \leftarrow \$ \{0, \ldots, |G| - 1\}$

To send a message m, the sender sends the cipher text

$$(g^y, m \cdot pk^y)$$

where $y \leftarrow \$ \{0, \ldots, |G| - 1\}$

Think: Should y be reused if the same sender wants to encrypt a new message m' or the same message m again?

Security Proof Intuition: $$(g, g^x, g^y, g^{xy}) \approx^c (g, g^x, g^y, g^z)$$
implies that the mask g^{xy} used in the encryption looks like a random mask g^z
To send a second message m' the (possibly, new) sender sends $(g^{y'}, m' \cdot pk^{y'})$, where $y' \leftarrow \{0, \ldots, |G| - 1\}$

Security Proof Intuition: We have to show that $(g, g^x, g^y, g^{xy}, g^{y'}, g^{xy'}) \approx (c) (g, g^x, g^y, g^z, g^{y'}, g^{z'})$. Do we need a new assumption or will DDH suffice?
DDH-based Proof of Security

Consider the following hybrids:

- $H^{(0)}: (g, g^x, g^y, g^{xy}, g^{y'}, g^{xy'})$
- $H^{(1)}: (g, g^x, g^y, g^z, g^{y'}, g^{xy'})$
- $H^{(2)}: (g, g^x, g^y, g^{xy}, g^{y'}, g^{z'})$

We prove that $H^{(0)} \approx^{(c)} H^{(1)}$ and $H^{(1)} \approx^{(c)} H^{(2)}$ using DDH. We shall show the first implication: DDH $\rightarrow H^{(0)} \approx^{(c)} H^{(1)}$. Second implication is left as an exercise.
Proof

- Suppose an efficient adversary A^* can distinguish the distribution $(g, g^x, g^y, g^{xy}, g^{y'}, g^{xy'})$ from the distribution $(g, g^x, g^y, g^z, g^{y'}, g^{z'})$

- Consider the algorithm \tilde{A} that can distinguish (g, g^x, g^y, g^{xk}) from (g, g^x, g^y, g^z)
 - On input $(g, \alpha, \beta, \gamma)$, sample $y' \leftarrow \{0, \ldots, |G| - 1\}$
 - Output $A^*(g, \alpha, \beta, \gamma, g^{y'}, \alpha^{y'})$

- Prove: If A^* distinguishes its two distributions with advantage ε then \tilde{A} distinguishes its two distributions with advantage ε
A family of functions $\mathcal{H} = \{h^{(1)}, \ldots, h^{(k)}\}$ is called a collision resistant hash function family, if:

- For all $i \in \{1, \ldots, k\}$ the function $h^{(i)}: D \to R$ and $|D| > |R|$
- The advantage of any efficient adversary A in the following game with the honest challenger is negligible
 - The honest challenger \mathcal{H} samples $i \leftarrow \{1, \ldots, k\}$ and sends $h^{(i)}$ to the adversary A
 - The adversary A replies back with (x, x')
 - The honest challenger outputs $z = 1$ if and only if $x \neq x'$ and $h^{(i)}(x) = h^{(i)}(x')$
Let G be a multiplicative group with generator g where Discrete Log is believed to be hard. For $y \in G$, define $h^{(y)}(b, x) = y^b g^x$, where $b \in \{0, 1\}$ and $x \in \{0, \ldots, |G| - 1\}$. Then we will show that $\mathcal{H} = \{ h^{(y)} : y \in G \}$ is a CRHF.
Proof of Security

Suppose A^* breaks the CRHF security property.
Suppose the A^* replies with distinct (b, x) and (b', x') as a collision.

Claim

It is impossible to have $b = b'$

If possible let $b = b'$.
Then it must be the case that $x \neq x'$.
Then we have $y^b g^x = y^{b'} g^{x'} \iff g^x = g^{x'} \iff x = x'$, a contradiction.
So, in a successful collision it must be the case that $b \neq b'$

Without loss of generality, assume that $b = 0$ and $b' = 1$

So, we have $g^x = yg^{x'} \iff g^{(x-x')} = y$

So, $x - x'$ is the discrete log of y, when $b = 0$

Consider the following adversary \tilde{A} against discrete log:

- On input y send $h^{(y)}$ to A^*
- Receive (b, x) and (b', x') in reply
- If $(b, x) \neq (b', x')$ and $h^{(y)}(b, x) = h^{(y)}(b', x')$ then:
 - If $b = 0$, return $(x - x') \mod |G|$
 - If $b' = 0$, return $(x' - x) \mod |G|$
- Else return 0 (i.e., the algorithm could not find the discrete log)

What is the probability that \tilde{A} outputs the correct discrete logarithm?