Lecture 16: Public-key Encryption and Collision-Resistant Hash Functions

Lecture 16: Public-key Encryption and Collision-Resistant

э

- The receiver broadcasts $\mathsf{pk} = g^x$, where $x \xleftarrow{\$} \{0, \dots, |G| 1\}$
- To send a message m, the sender sends the cipher text $(g^{y}, m \cdot pk^{y})$, where $y \stackrel{s}{\leftarrow} \{0, \dots, |G| 1\}$

Think: Should y be reused if the same sender wants to encrypt a new message m' or the same message m again? Security Proof Intuition: $(g, g^x, g^y, g^{xy}) \approx^{(c)} (g, g^x, g^y, g^z)$ implies that the mask g^{xy} used in the encryption looks like a random mask g^z

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

• To send a second message m' the (possibly, new) sender sends $(g^{y'}, m' \cdot pk^{y'})$, where $y' \stackrel{s}{\leftarrow} \{0, \dots, |G| - 1\}$

Security Proof Intuition: We have to show that $(g, g^x, g^y, g^{xy}, g^{y'}, g^{xy'}) \approx^{(c)} (g, g^x, g^y, g^z, g^{y'}, g^{z'})$. Do we need a new assumption or will DDH suffice?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Consider the following hybrids:

- $H^{(0)}: (g, g^{x}, g^{y}, g^{xy}, g^{y'}, g^{xy'})$
- $H^{(1)}: (g, g^x, g^y, g^z, g^{y'}, g^{xy'})$
- $H^{(2)}: (g, g^{x}, g^{y}, g^{xy}, g^{y'}, g^{z'})$

We prove that $H^{(0)} \approx^{(c)} H^{(1)}$ and $H^{(1)} \approx^{(c)} H^{(2)}$ using DDH. We shall show the first implication: DDH $\implies H^{(0)} \approx^{(c)} H^{(1)}$. Second implication is left as an exercise.

- Suppose an efficient adversary A* can distinguish the distribution (g, g^x, g^y, g^{xy}, g^{xy}, g^{y'}, g^{xy'}) from the distribution (g, g^x, g^y, g^z, g^{y'}, g^{z'})
- Consider the algorithm $\widetilde{\mathcal{A}}$ that can distinguish (g, g^x, g^y, g^{xk}) from (g, g^x, g^y, g^z)
 - On input $(g, \alpha, \beta, \gamma)$, sample $y' \stackrel{\$}{\leftarrow} \{0, \dots, |G| 1\}$
 - Output $\mathcal{A}^*(g, \alpha, \beta, \gamma, g^{y'}, \alpha^{y'})$
- Prove: If \mathcal{A}^* distinguishes its two distributions with advantage ε then $\widetilde{\mathcal{A}}$ distinguishes its two distributions with advantage ε

A family of functions $\mathcal{H} = \{h^{(1)}, \dots, h^{(k)}\}$ is called a collision resistant hash function family, if:

- For all $i \in \{1, \dots, k\}$ the function $h^{(i)} \colon D \to R$ and |D| > |R|
- $\bullet\,$ The advantage of any efficient adversary ${\cal A}$ in the following game with the honest challenger is negligible
 - The honest challenger $\mathcal H$ samples $i \stackrel{\$}{\leftarrow} \{1, \ldots, k\}$ and sends $h^{(i)}$ to the adversary $\mathcal A$
 - The adversary \mathcal{A} replies back with (x, x')
 - The honest challenger outputs z = 1 if and only if $x \neq x'$ and $h^{(i)}(x) = h^{(i)}(x')$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うので

Let G be a multiplicative group with generator g where Discrete Log is believed to be hard. For $y \in G$, define $h^{(y)}(b, x) = y^b g^x$, where $b \in \{0, 1\}$ and $x \in \{0, ..., |G| - 1\}$. Then we will show that $\mathcal{H} = \{h^{(y)} : y \in G\}$ is a CRHF.

(日本)(日本)(日本)(日本)

Proof of Security

- \bullet Suppose \mathcal{A}^* breaks the CRHF security property
- Suppose the \mathcal{A}^* replies with distinct (b,x) and (b',x') as a collision

Claim

It is impossible to have b = b'

- If possible let b = b'
- Then it must be the case that $x \neq x'$
- Then we have $y^b g^x = y^{b'} g^{x'} \iff g^x = g^{x'} \iff x = x'$, a contradiction

Proof Continued

- So, in a successful collision it must be the case that b
 eq b'
- Without loss of generality, assume that b = 0 and b' = 1
- So, we have $g^x = yg^{x'} \iff g^{(x-x')} = y$
- So, x x' is the discrete log of y, when b = 0
- Consider the following adversary $\widetilde{\mathcal{A}}$ against discrete log:
 - On input y send $h^{(y)}$ to \mathcal{A}^*
 - Receive (b, x) and (b', x') in reply
 - If $(b, x) \neq (b', x')$ and $h^{(y)}(b, x) = h^{(y)}(b', x')$ then:
 - If b = 0, return $(x x') \mod |G|$
 - If b' = 0, return $(x' x) \mod |G|$
 - Else return 0 (i.e., the algorithm could not find the discrete log)
- What is the probability that $\widetilde{\mathcal{A}}$ outputs the correct discrete logarithm?

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うので