Lecture 15: Key-Agreement and Public-key Encryption

Lecture 15: Key-Agreement and Public-key Encryption

- Decisional Diffie-Hellman (DDH). Intuition: The distribution (g, g^x, g^y, g^{xy}) is indistinguishable from (g, g^x, g^y, g^z)
- Computational Diffie-Hellman (CDH). Intuition: Given (g, g^x, g^y) it is computationally hard to compute g^{xy}
- Discrete Log (DL). Intuition: Given (g, g^x) it is computationally infeasible to calculate x
- We have shown that: DDH \implies CDH \implies DL
- DDH Assumption is a <u>much</u> stronger assumption than CDH Assumption

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

We will show the existence of a group where DDH is false but CDH is believed to hold true

- Let (\mathbb{Z}_p^*, \cdot) be the multiplicative group mod p, where p is a prime
- Let g be a generator for (\mathbb{Z}_p^*, \cdot)
- Note: For all $a \in \mathbb{Z}_p^*$, we have $a^{p-1} = 1 \mod p$
- We say that x is a square if there exists y such that x = y² mod p
- Note: a^{(p-1)/2} mod p is 1 if and only if a is a square; otherwise it is (p - 1)
- If g^{\times} or g^{y} is a square then $g^{\times y}$ is a square with probability 1
- If g^x or g^y is a square then g^z is a square with probability 1/2
- Think: Use the above observation to distinguish (g, g^x, g^y, g^{xy}) from (g, g^x, g^y, g^z)

< ロ > (同 > (回 > (回 >))) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) (回 >) (回 >)) = (回 > (回 >)) (回 >) (回 >)) = ((\Pi >)) (((\Pi >))) (((\Pi >))) ((((\Pi >))

We give an example of a group where we believe DDH holds

- Let n = 2p + 1 such that n and p are primes
- Let (\mathbb{QR}_n^*, \cdot) be the multiplicative subgroup of (\mathbb{Z}_n^*, \cdot) , where \mathbb{QR}_n^* is the set of all squares

We believe that DDH holds in (\mathbb{QR}_n^*, \cdot)

General Template

- Alice samples local randomness r_A
- Bob samples local randomness r_B
- Starting with Alice, the parties interactively generate the transcript $(\tau_1, \tau_2, \ldots, \tau_{2k-1}, \tau_{2k})$
- Alice outputs a key k_A based on her view (Alice view is $V_A = (r_A, \tau_2, \tau_4, \dots, \tau_{2k})$)
- Bob outputs a key k_B based on his view (Bob view is $V_B = (r_B, \tau_1, \tau_3, \dots, \tau_{2k-1}))$
- Correctness: $\Pr[K_A = K_B] \ge 0.99$
- Security: For all efficient eavesdropper Eve (her view $\overline{V_E = (\tau_1, \tau_2, \dots, \tau_{2k})}$) we have

$$(K_A, \mathbb{V}_E) \approx^{(c)} (U, \mathbb{V}_E)$$

Lecture 15: Key-Agreement and Public-key Encryption

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Alice samples $x \stackrel{s}{\leftarrow} \{0, \dots, |G| 1\}$ and sends $\alpha = g^x$ to Bob
- Bob samples $y \stackrel{\hspace{0.4mm}{\scriptsize\leftarrow}}{\leftarrow} \{0,\ldots,|\mathcal{G}|-1\}$ and sends $\beta = g^y$ to Alice
- Alice outputs $k_A = \beta^x$ and Bob outputs $k_B = \alpha^y$
- Correctness probability is 1
- Eve view $V_E = (g^x, g^y)$ and $k_A = g^{xy}$ By DDH assumption we know that $(g^{xy}, g^x, g^y) \approx^{(c)} (g^z, g^x, g^y)$. Hence, this is a secure key-agreement protocol

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

Public-key Encryption from Key-agreement

Intuition: Alice is the receiver and Bob is the sender. At the end of 2-rounds of key-agreement, we have a secret key $k_A = k_B$ shared between the parties. Use that as a one-time pad to encrypt the message.

• Let $\mathsf{pk} = \alpha$ and $\mathsf{sk} = x$

• Let
$$Enc(m) = (\beta, c = m \cdot k_B)$$

• Let
$$\mathsf{Dec}(m,\mathsf{sk}) = c \cdot (k_{\mathcal{A}})^{-1}$$

Proof of security.

 Intuition: The distribution of the encryptions of m is computationally indistinguishable from the distribution of the encryptions of m'.

• Prove:
$$(g^x, g^y, m \cdot g^{xy}) \approx^{(c)} (g^x, g^y, m \cdot g^z) \equiv (g^x, g^y, m' \cdot g^z) \approx^{(c)} (g^x, g^y, m' \cdot g^{xy})$$