Lecture 14: Public-key Cryptography

Lecture 14: Public-key Cryptography

▲御▶ ▲理≯ ▲理≯ …

э

• Let (G, \circ) be a group

- We use g^i to represent the group element $\overbrace{g \circ \cdots \circ g}^{i-\text{times}}$, and g^0 is used to represent the identity element e of the group G
- (G,\circ) is a cyclic group of order N generated by $g\in G$, if

$$G = \{g^0, g^1, \ldots, g^{N-1}\}$$

- In our context, $N = 2^n$ and our algorithms should be polynomial in n
- Example: $(\mathbb{Z}_n, +)$ is generated by any $g \in \mathbb{Z}_n$ such that g.c.d.(n,g) = 1

イロト イポト イヨト イヨト

Given
$$a \in \{0, \ldots, N-1\}$$
, compute g^a :

- Let $G_0 = g$
- For i = 1 to (n-1): Do $G_i = G_{i-1} \circ G_{i-1}$
- Consider the binary decomposition of *n*. Suppose we have, $a = \sum_{k=0}^{(n-1)} a_k 2^k$, where $a_k \in \{0, 1\}$

• Output
$$\alpha = \prod_{k=0}^{(n-1)} (G_k)^{a_k}$$

Proof of correctness: Prove that $G_k = g^{2^k}$ and $\alpha = g^a$. Note that this algorithm is polynomial in n (if computing \circ is efficient in n)

Lecture 14: Public-key Cryptography

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

Sampling a random element in G:

• Sample
$$a \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \{0,\ldots,N-1\}$$

• Output
$$\alpha = g^a$$

э

- Intuition: For appropriate groups G and generator g, given α = g^a, for a ^{\$} {0,..., N − 1}, it is computationally hard to recover a
- Formally, it is defined by the following game between honest challenger $\mathcal H$ and arbitrary efficient adversary $\mathcal A$:
 - The honest challenger \mathcal{H} samples, $a \stackrel{\$}{\leftarrow} \{0, \ldots, N-1\}$ and computes $\alpha = g^a$, and sends (g, α) to the adversary \mathcal{A}
 - 2 The adversary \mathcal{A} replies back with $\widetilde{a} \in \{0, \dots, N-1\}$
 - 3) The honest challenger outputs z=1 if and only if $a=\widetilde{a}$
- Security requirement states that $\Pr[z=1]$ is negligible for all efficient \mathcal{A}

・ロト ・聞ト ・ヨト ・ヨト

Assuming the Hardness of Discrete Logarithm Assumption for a cyclic group (G, \circ) generated by g, prove that the following function is a one-way function:

$$f(g,a) = (g,g^a)$$

Lecture 14: Public-key Cryptography

A B A A B A

Decisional Diffie-Hellman Assumption (DDH)

- Intuition: The distribution (g, g^x, g^y, g^{xy}) is indistinguishable from the distribution (g, g^x, g^y, g^z), for uniformly random x, y, z in {0,..., N-1}
- Experiment is defined between a honest challenger $\mathcal H$ and arbitrary efficient adversary $\mathcal A$:

• The honest challenger sample
$$b \stackrel{\$}{\leftarrow} \{0, 1\}$$
 If $b = 0$, sample $x \stackrel{\$}{\leftarrow} \{0, \ldots, N-1\}$ and $y \stackrel{\$}{\leftarrow} \{0, \ldots, N-1\}$, and define $\alpha = g^x$, $\beta = g^y$ and $\gamma = g^{xy}$. If $b = 1$, sample $x \stackrel{\$}{\leftarrow} \{0, \ldots, N-1\}$, $y \stackrel{\$}{\leftarrow} \{0, \ldots, N-1\}$, and $z \stackrel{\$}{\leftarrow} \{0, \ldots, N-1\}$, and define $\alpha = g^x$, $\beta = g^y$ and $\gamma = g^z$. Send $(g, \alpha, \beta, \gamma)$ to the adversary \mathcal{A}

- The adversary replies back with b
- The honest challenger ${\mathcal H}$ outputs z=1 if and only if $b=\overline{b}$
- The security assumption says that, for any efficient adversary \mathcal{A} , there exists a negligible function ν such that $\Pr[z=1] \leqslant \frac{1}{2} + \nu$

$DDH \implies DL$

- Let \mathcal{A}^* be an adversary that can break DL assumption and $\Pr[z=1]=\varepsilon \geqslant 1/n^c$
- Consider the following code of $\widetilde{\mathcal{A}}$ on input $(g, \alpha, \beta, \gamma)$:

• Let
$$a' = \mathcal{A}^*(\alpha)$$

• If $g^{a'} \neq \alpha$, then output $\widetilde{b} \xleftarrow{\$} \{0, 1\}$

• If
$$g^{a'} = \alpha$$
, then:

• If
$$(\beta^{a'} = \gamma)$$
: Output $\tilde{b} = 0$
• If $(\beta^{a'} \neq \gamma)$: Output $\tilde{b} = 1$

• The probability of successfully predicting *b* is $(1-\varepsilon) \cdot \frac{1}{2} + \varepsilon \cdot \left(\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot \left(1 - \frac{1}{N}\right)\right) = \frac{1}{2} + \left(\varepsilon/2 - \frac{1}{2N}\right)$

Lecture 14: Public-key Cryptography

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Intuition: Given (g, g^x, g^y) is hard to compute g^{xy}
- Experiment is defined between honest challenger $\mathcal H$ and arbitrary efficient adversary $\mathcal A$:
 - The honest challenger samples $x \stackrel{\$}{\leftarrow} \{0, \dots, N-1\}$ and $y \stackrel{\$}{\leftarrow} \{0, \dots, N-1\}$ and sends $(g, \alpha = g^x, \beta = g^y)$ to \mathcal{A}
 - The adversary ${\cal A}$ replies back with $\widetilde{\gamma}$
 - ullet The honest challenger ${\cal H}$ outputs z=1 if and only if $g^{xy}=\widetilde{\gamma}$
- Security states that for any efficient adversary A, we have $\Pr[z = 1] \leq \nu$, where ν is a negligible function

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

- Show that CDH \implies DL (Hint: Use an adversary that finds the logarithm to find the logarithm a' of α and then compute compute g^{xy} from β and a')
- Show that DDH \implies CDH (Hint: Use an adversary that helps compute g^{xy} from (g, α, β) to check whether $\gamma = g^{xy}$ or not)

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >