Cyclic Groups

Let \((G, \circ)\) be a group

We use \(g^i\) to represent the group element \(\underbrace{g \circ \cdots \circ g}_{i\text{-times}}\), and \(g^0\) is used to represent the identity element \(e\) of the group \(G\).

\((G, \circ)\) is a cyclic group of order \(N\) generated by \(g \in G\), if

\[G = \{g^0, g^1, \ldots, g^{N-1}\} \]

In our context, \(N = 2^n\) and our algorithms should be polynomial in \(n\).

Example: \((\mathbb{Z}_n, +)\) is generated by any \(g \in \mathbb{Z}_n\) such that \(\text{g.c.d.}(n, g) = 1\).
Given \(a \in \{0, \ldots, N - 1\} \), compute \(g^a \):

- Let \(G_0 = g \)
- For \(i = 1 \) to \((n - 1) \): Do \(G_i = G_{i-1} \circ G_{i-1} \)
- Consider the binary decomposition of \(n \). Suppose we have,
 \[a = \sum_{k=0}^{(n-1)} a_k 2^k \], where \(a_k \in \{0, 1\} \)
- Output \(\alpha = \prod_{k=0}^{(n-1)} (G_k)^{a_k} \)

Proof of correctness: Prove that \(G_k = g^{2^k} \) and \(\alpha = g^a \). Note that this algorithm is polynomial in \(n \) (if computing \(\circ \) is efficient in \(n \))
Some Examples of Efficient Algorithms

Sampling a random element in G:

- Sample $a \leftarrow \{0, \ldots, N - 1\}$
- Output $\alpha = g^a$
Intuition: For appropriate groups G and generator g, given $\alpha = g^a$, for $a \xleftarrow{\$} \{0, \ldots, N - 1\}$, it is computationally hard to recover a

Formally, it is defined by the following game between honest challenger \mathcal{H} and arbitrary efficient adversary \mathcal{A}:

1. The honest challenger \mathcal{H} samples, $a \xleftarrow{\$} \{0, \ldots, N - 1\}$ and computes $\alpha = g^a$, and sends (g, α) to the adversary \mathcal{A}
2. The adversary \mathcal{A} replies back with $\tilde{a} \in \{0, \ldots, N - 1\}$
3. The honest challenger outputs $z = 1$ if and only if $a = \tilde{a}$

Security requirement states that $\Pr[z = 1]$ is negligible for all efficient \mathcal{A}
Assuming the Hardness of Discrete Logarithm Assumption for a cyclic group \((G, \circ)\) generated by \(g\), prove that the following function is a one-way function:

\[
f(g, a) = (g, g^a)
\]
Decisional Diffie-Hellman Assumption (DDH)

- Intuition: The distribution \((g, g^x, g^y, g^{xy})\) is indistinguishable from the distribution \((g, g^x, g^y, g^z)\), for uniformly random \(x, y, z\) in \(\{0, \ldots, N - 1\}\).

- Experiment is defined between a honest challenger \(\mathcal{H}\) and arbitrary efficient adversary \(\mathcal{A}\):
 - The honest challenger sample \(b \leftarrow \{0, 1\}\) If \(b = 0\), sample \(x \leftarrow \{0, \ldots, N - 1\}\) and \(y \leftarrow \{0, \ldots, N - 1\}\), and define \(\alpha = g^x, \beta = g^y\) and \(\gamma = g^{xy}\). If \(b = 1\), sample \(x \leftarrow \{0, \ldots, N - 1\}\), \(y \leftarrow \{0, \ldots, N - 1\}\), and \(z \leftarrow \{0, \ldots, N - 1\}\), and define \(\alpha = g^x, \beta = g^y\) and \(\gamma = g^z\). Send \((g, \alpha, \beta, \gamma)\) to the adversary \(\mathcal{A}\).
 - The adversary replies back with \(\tilde{b}\).
 - The honest challenger \(\mathcal{H}\) outputs \(z = 1\) if and only if \(b = \tilde{b}\).

- The security assumption says that, for any efficient adversary \(\mathcal{A}\), there exists a negligible function \(\nu\) such that \(\Pr[z = 1] \leq \frac{1}{2} + \nu\).
Let \mathcal{A}^* be an adversary that can break DL assumption and $\Pr[z = 1] = \varepsilon \geq 1/n^c$.

Consider the following code of $\widetilde{\mathcal{A}}$ on input $(g, \alpha, \beta, \gamma)$:

- Let $a' = \mathcal{A}^*(\alpha)$
- If $g^{a'} \neq \alpha$, then output $\widetilde{b} \leftarrow \{0, 1\}$
- If $g^{a'} = \alpha$, then:
 - If $(\beta^{a'} = \gamma)$: Output $\widetilde{b} = 0$
 - If $(\beta^{a'} \neq \gamma)$: Output $\widetilde{b} = 1$

The probability of successfully predicting b is:

$$(1 - \varepsilon) \cdot \frac{1}{2} + \varepsilon \cdot \left(\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot \left(1 - \frac{1}{N} \right) \right) = \frac{1}{2} + \left(\varepsilon/2 - \frac{1}{2N} \right)$$
Computational Diffie-Hellman Assumption (CDH)

- Intuition: Given \((g, g^x, g^y)\) is hard to compute \(g^{xy}\)
- Experiment is defined between honest challenger \(\mathcal{H}\) and arbitrary efficient adversary \(\mathcal{A}\):
 - The honest challenger samples \(x \leftarrow \{0, \ldots, N-1\}\) and \(y \leftarrow \{0, \ldots, N-1\}\) and sends \((g, \alpha = g^x, \beta = g^y)\) to \(\mathcal{A}\)
 - The adversary \(\mathcal{A}\) replies back with \(\tilde{\gamma}\)
 - The honest challenger \(\mathcal{H}\) outputs \(z = 1\) if and only if \(g^{xy} = \tilde{\gamma}\)
- Security states that for any efficient adversary \(\mathcal{A}\), we have \(\Pr[z = 1] \leq \nu\), where \(\nu\) is a negligible function
Reduction Exercises

- Show that CDH \implies DL (Hint: Use an adversary that finds the logarithm to find the logarithm a' of α and then compute g^{xy} from β and a')
- Show that DDH \implies CDH (Hint: Use an adversary that helps compute g^{xy} from (g, α, β) to check whether $\gamma = g^{xy}$ or not)