Lecture 14: Public-key Cryptography

Lecture 14: Public-key Cryptography

Cyclic Groups

- Let (G, \circ) be a group
- We use g^{i} to represent the group element $\overbrace{g \circ \cdots \circ g}^{i \text {-times }}$, and g^{0} is used to represent the identity element e of the group G
- (G, \circ) is a cyclic group of order N generated by $g \in G$, if

$$
G=\left\{g^{0}, g^{1}, \ldots, g^{N-1}\right\}
$$

- In our context, $N=2^{n}$ and our algorithms should be polynomial in n
- Example: $\left(\mathbb{Z}_{n},+\right)$ is generated by any $g \in \mathbb{Z}_{n}$ such that g.c.d. $(n, g)=1$

Some Examples of Efficient Algorithms

Given $a \in\{0, \ldots, N-1\}$, compute g^{a} :

- Let $G_{0}=g$
- For $i=1$ to $(n-1)$: Do $G_{i}=G_{i-1} \circ G_{i-1}$
- Consider the binary decomposition of n. Suppose we have, $a=\sum_{k=0}^{(n-1)} a_{k} 2^{k}$, where $a_{k} \in\{0,1\}$
- Output $\alpha=\prod_{k=0}^{(n-1)}\left(G_{k}\right)^{a_{k}}$

Proof of correctness: Prove that $G_{k}=g^{2^{k}}$ and $\alpha=g^{a}$. Note that this algorithm is polynomial in n (if computing \circ is efficient in n)

Sampling a random element in G :

- Sample $a \stackrel{\varsigma}{\leftarrow}\{0, \ldots, N-1\}$
- Output $\alpha=g^{a}$

Discrete Logarithm Assumption (DL)

- Intuition: For appropriate groups G and generator g, given $\alpha=g^{a}$, for $a \stackrel{\$}{\leftarrow}\{0, \ldots, N-1\}$, it is computationally hard to recover a
- Formally, it is defined by the following game between honest challenger \mathcal{H} and arbitrary efficient adversary \mathcal{A} :
(1) The honest challenger \mathcal{H} samples, $a \stackrel{s}{\leftarrow}\{0, \ldots, N-1\}$ and computes $\alpha=g^{a}$, and sends (g, α) to the adversary \mathcal{A}
(2) The adversary \mathcal{A} replies back with $\widetilde{a} \in\{0, \ldots, N-1\}$
(3) The honest challenger outputs $z=1$ if and only if $a=\widetilde{a}$
- Security requirement states that $\operatorname{Pr}[z=1]$ is negligible for all efficient \mathcal{A}

A Simple Exercise

Assuming the Hardness of Discrete Logarithm Assumption for a cyclic group (G, \circ) generated by g, prove that the following function is a one-way function:

$$
f(g, a)=\left(g, g^{a}\right)
$$

Decisional Diffie-Hellman Assumption (DDH)

- Intuition: The distribution ($g, g^{x}, g^{y}, g^{x y}$) is indistinguishable from the distribution $\left(g, g^{x}, g^{y}, g^{z}\right)$, for uniformly random x, y, z in $\{0, \ldots, N-1\}$
- Experiment is defined between a honest challenger \mathcal{H} and arbitrary efficient adversary \mathcal{A} :
- The honest challenger sample $b \stackrel{\Im}{\leftarrow}_{\leftarrow}^{\{0,1\}}$ If $b=0$, sample $x \stackrel{\S}{\leftarrow}\{0, \ldots, N-1\}$ and $y \stackrel{\S}{\leftarrow}\{0, \ldots, N-1\}$, and define $\alpha=g^{x}, \beta=g^{y}$ and $\gamma=g^{x y}$. If $b=1$, sample $x \stackrel{\&}{\leftarrow}\{0, \ldots, N-1\}, y \stackrel{\&}{\leftarrow}\{0, \ldots, N-1\}$, and $z \leftarrow^{\mathfrak{s}}\{0, \ldots, N-1\}$, and define $\alpha=g^{x}, \beta=g^{y}$ and $\gamma=g^{z}$. Send $(g, \alpha, \beta, \gamma)$ to the adversary \mathcal{A}
- The adversary replies back with \widetilde{b}
- The honest challenger \mathcal{H} outputs $z=1$ if and only if $b=\widetilde{b}$
- The security assumption says that, for any efficient adversary \mathcal{A}, there exists a negligible function ν such that $\operatorname{Pr}[z=1] \leqslant \frac{1}{2}+\nu$

DDH \Longrightarrow DL

- Let \mathcal{A}^{*} be an adversary that can break DL assumption and $\operatorname{Pr}[z=1]=\varepsilon \geqslant 1 / n^{c}$
- Consider the following code of $\widetilde{\mathcal{A}}$ on input $(g, \alpha, \beta, \gamma)$:
- Let $a^{\prime}=\mathcal{A}^{*}(\alpha)$
- If $g^{a^{\prime}} \neq \alpha$, then output $\widetilde{b} \leftarrow^{\S}\{0,1\}$
- If $g^{a^{\prime}}=\alpha$, then:
- If $\left(\beta^{a^{\prime}}=\gamma\right)$: Output $\tilde{b}=0$
- If ($\left.\beta^{a^{\prime}} \neq \gamma\right)$: Output $\widetilde{b}=1$
- The probability of successfully predicting b is

$$
(1-\varepsilon) \cdot \frac{1}{2}+\varepsilon \cdot\left(\frac{1}{2} \cdot 1+\frac{1}{2} \cdot\left(1-\frac{1}{N}\right)\right)=\frac{1}{2}+\left(\varepsilon / 2-\frac{1}{2 N}\right)
$$

Computational Diffie-Hellman Assumption (CDH)

- Intuition: Given $\left(g, g^{x}, g^{y}\right)$ is hard to compute $g^{x y}$
- Experiment is defined between honest challenger \mathcal{H} and arbitrary efficient adversary \mathcal{A} :
- The honest challenger samples $x \leftarrow^{\S}\{0, \ldots, N-1\}$ and $y \stackrel{\varsigma}{\leftarrow}\{0, \ldots, N-1\}$ and sends $\left(g, \alpha=g^{x}, \beta=g^{y}\right)$ to \mathcal{A}
- The adversary \mathcal{A} replies back with $\widetilde{\gamma}$
- The honest challenger \mathcal{H} outputs $z=1$ if and only if $g^{x y}=\widetilde{\gamma}$
- Security states that for any efficient adversary \mathcal{A}, we have $\operatorname{Pr}[z=1] \leqslant \nu$, where ν is a negligible function

Reduction Exercises

- Show that $\mathrm{CDH} \Longrightarrow \mathrm{DL}$ (Hint: Use an adversary that finds the logarithm to find the logarithm a^{\prime} of α and then compute compute $g^{x y}$ from β and a^{\prime})
- Show that DDH \Longrightarrow CDH (Hint: Use an adversary that helps compute $g^{x y}$ from (g, α, β) to check whether $\gamma=g^{x y}$ or not)

