Lecture 13: Pseudo-random Functions

Lecture 13: Pseudo-random Functions

御 と く ヨ と く ヨ と

э

Random Functions

- A function $f: \{0,1\}^n \to \{0,1\}^n$ is described by the list of values $(f(0), \ldots, f(2^n 1))$
- So, f is described by a length $n \cdot 2^n$ long bit-string
- Note that any length n · 2ⁿ long bit-string corresponds to a function, and no two different functions have an identical n · 2ⁿ long bit-string description
- So, the set of all functions from {0,1}ⁿ → {0,1}ⁿ has a bijection to the set of all bit-strings of length n · 2ⁿ
- Let \mathcal{F}_n be the set of all functions that map $\{0,1\}^n o \{0,1\}^n$
- Then, due to the bijection, $|\mathcal{F}_n| = 2^{n \cdot 2^n}$

Definition (Random Function)

A function $f \stackrel{\$}{\leftarrow} \mathcal{F}_n$ is a random function

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Pseudo-Random Functions

Let $\mathcal{H}_n \subseteq \mathcal{F}_n$ and consider the following experiment between an honest challenger \mathcal{H} and an arbitrary efficient adversary \mathcal{A}

- The honest challenger \mathcal{H} samples $b \stackrel{\$}{\leftarrow} \{0, 1\}$. If b = 0, it draws $f \stackrel{\$}{\leftarrow} \mathcal{H}_n$, otherwise $f \stackrel{\$}{\leftarrow} \mathcal{F}_n$.
- For i = 1 to q, the adversary A provides x⁽ⁱ⁾ ∈ {0,1}ⁿ and the honest challenger H replies with y⁽ⁱ⁾ = f(x⁽ⁱ⁾)
- The adversary \mathcal{A} provides a bit \tilde{b} to the honest challenger \mathcal{H} .
- The honest challenger outputs z = 1, if $b = \tilde{b}$, otherwise outputs z = 0

Definition

Pseudo-random Function \mathcal{H}_n is called a family of pseudorandom functions if the advantage of any computationally bounded adversary \mathcal{A} is at most a negligible

< ロ > < 同 > < 回 > < 回 > < 回 > <

Goldreich-Goldwasser-Micali Construction

- Let $G_n \colon \{0,1\}^n \to \{0,1\}^{2n}$ be a PRG
- Define functions $G_n^{(0)}$: $\{0,1\}^n \to \{0,1\}^n$ and $G_n^{(1)}$: $\{0,1\}^n \to \{0,1\}^n$ as follows.
 - $G_n^{(0)}(s)$ is the first *n*-bits of $G_n(s)$
 - $G_n^{(1)}(s)$ is the last *n*-bits of $G_n(s)$
 - Note: We have $G_n(s) = (G_n^{(0)}(s), G_n^{(1)}(s))$
- For $s \in \{0,1\}^n$, define $f_s \colon \{0,1\}^n \to \{0,1\}^n$ as the function:

$$f_s(x) = G_n^{(x_n)}(\cdots G_n^{(x_2)}(G_n^{(x_1)}(s))\cdots),$$

where $x = x_1 x_2 \dots x_n$.

• Let
$$\mathcal{H}_n = \{f_s \colon s \in \{0,1\}^n\}$$

Theorem (GGM is a PRF)

The set of function \mathcal{H}_n defined above is a PRF family

Lecture 13: Pseudo-random Functions

- We will not prove the theorem that GGM construction provides PRFs
- Interested students are referred to the following lecture notes: link 1 and link 2
- There is another construction of PRFs known as the Naor-Reingold Construction that is provided in the above mentioned lecture notes. The GGM construction is highly sequential in nature, but the evaluation of the Naor-Reingold function can be easily parallelized. Albeit, the security of the Naor-Reingold construction is based on significantly stronger computational assumptions than the existence of OWF, unlike the security of the GGM construction.

・ロッ ・雪 ・ ・ ヨ ・ ・ 日 ・