Lecture 12: Goldrecih-Levin Hardcore Predicate

Recall: Overall Construction of PRG from OWP

- Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a OWP
- Given f construct a new OWP that has a hardcore predicate. Let $g:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n} \times\{0,1\}^{n}$ be a OWP defined by $g(x, r)=(f(x), r)$ and $h(x, r)=\langle x, r\rangle$ be the corresponding hardcore predicate
- Given a OWP with a hardcore predicate, construct a one-bit extension PRG. Let $G:\{0,1\}^{2 n} \rightarrow\{0,1\}^{2 n+1}$ be the one-bit extension PRG defined by

$$
G(x, r)=(g(x, r), h(x, r)) \equiv(f(x), r,\langle x, r\rangle)
$$

- Given the one-bit extension PRG G, construct an arbitrary polynomial-stretch PRG. Let $H:\{0,1\}^{2 n} \rightarrow\{0,1\}^{\ell}$ be the arbitrary stretch PRG, where $\ell>2 n$ and ℓ is a polynomial in n. We define

$$
H(x, r)=\left(\langle x, r\rangle,\langle f(x), r\rangle,\left\langle f^{2}(x), r\right\rangle, \ldots,\left\langle f^{\ell-1}(x), r\right\rangle\right)
$$

- We have seen the proofs of all the steps except the following: $h(x, r)$ is a hardcore predicate of $g(x, r)$.
- To show this result, we need to show the following equivalent result: f is a OWP \Longrightarrow Given $(f(x), r)$ for random x, r, it only possible to predict $\langle x, r\rangle$ with negligible advantage
- We consider the contrapositive of this statement
- We are given: There exists an efficient adversary \mathcal{A}^{*} that takes as input $(f(x), r)$ and correctly guesses $\langle x, r\rangle$ with $1 / n^{c}$ advantage
- We need to show: There exists an efficient adversary $\widetilde{\mathcal{A}}$ that can invert f at $1 / n^{d}$ fraction of inputs
- This is Goldreich-Levin Hardcore Predicate Theorem
- We will only see a restricted proof of this result

Restricted Proof: Version 1

- So, we are given:

$$
\operatorname{Pr}\left[x \sim U_{\{0,1\}^{n}}, r \sim U_{\{0,1\}^{n}}: \mathcal{A}^{*}(f(x), r)=\langle x, r\rangle\right] \geqslant \frac{1}{2}+\frac{1}{n^{c}}
$$

- In this restriction we consider:

$$
\operatorname{Pr}\left[x \sim U_{\{0,1\}^{n}}, r \sim U_{\{0,1\}^{n}}: \mathcal{A}^{*}(f(x), r)=\langle x, r\rangle\right]=1
$$

- Consider the following algorithm for $\widetilde{\mathcal{A}}(y)$
- For $i \in\{1, \ldots, n\}$: Let $\widetilde{x}_{i}=\mathcal{A}^{*}\left(y, e_{i}\right)$, where

$$
e_{i}=(\overbrace{0, \ldots, 0}^{(i-1)}, 1, \overbrace{0, \ldots, 0}^{(n-i)})
$$

- Return ($\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}$)
- Note that $\widetilde{x}_{i}=x_{i}$ for all i and hence the algorithm completely recovers x with probability 1

Restricted Proof: Version 2

- In this restriction we consider: For $\varepsilon=1 / n^{c}$

$$
\operatorname{Pr}\left[x \sim U_{\{0,1\}^{n}}, r \sim U_{\{0,1\}^{n}}: \mathcal{A}^{*}(f(x), r)=\langle x, r\rangle\right] \geqslant \frac{3}{4}+\varepsilon
$$

- Define the following subset

$$
G=\left\{x: \operatorname{Pr}_{r \sim U_{\{0,1\}^{n}}}\left[\mathcal{A}^{*}(f(x), r)=\langle x, r\rangle\right] \geqslant \frac{3}{4}+\frac{\varepsilon}{2}\right\}
$$

- Intuition: G is the set of all those "good" x where the adversary successfully finds the hardcore predicate with "good probability." We will invert the function f for $x \in G$

Claim

 $|G| \geqslant(\varepsilon / 2) \cdot 2^{n}$
Proof of the Claim

Overview:

- This argument is a general argument referred to as: Averaging Argument, Pigeon-hole Principle, or Markov Inequality
- English Version of this Inequality: If for random (x, r) an algorithm is "successful" with "overwhelming probability." Then the fraction of inputs that are "good values of x " where the algorithm succeeds with "good enough probability" is "noticeable"
- In our setting "successful" is the even that \mathcal{A}^{*} correctly outputs $\langle x, r\rangle$, "overwhelming probability" is $3 / 4+\varepsilon$, "good enough probability" is $3 / 4+\varepsilon / 2$, "good values of x " are those x s where for random r the algorithm finds the bit $\langle x, r\rangle$ with good enough probability, and "noticeable" is $\varepsilon / 2$

Perspective:

- Note that

$$
\operatorname{Pr}\left[x \sim U_{\{0,1\}^{n}}, r \sim U_{\{0,1\}^{n}}: \mathcal{A}^{*}(f(x), r)=\langle x, r\rangle\right] \geqslant \frac{3}{4}+\varepsilon
$$

implies that there exists one x such that:

$$
\operatorname{Pr}_{r \sim U_{\{0,1\}^{n}}}\left[\mathcal{A}^{*}(f(x), r)=\langle x, r\rangle\right] \geqslant \frac{3}{4}+\varepsilon
$$

- The claim weakens the threshold from $\frac{3}{4}+\varepsilon$ to $\frac{3}{4}+\varepsilon / 2$ and expects to find a lot of x s
- Consider a $2^{n} \times 2^{n}$ matrix where the rows are indexed by x and the columns are indexed by r. The (x, r)-th entry is 1 or depending on whether $\mathcal{A}^{*}(f(x), r)=\langle x, r\rangle$ or not. The entry that is 1 will be referred to as "shaded"
- The statement

$$
\operatorname{Pr}\left[x \sim U_{\{0,1\}^{n}}, r \sim U_{\{0,1\}^{n}}: \mathcal{A}^{*}(f(x), r)=\langle x, r\rangle\right] \geqslant \frac{3}{4}+\varepsilon
$$

is equivalent to saying that at least $3 / 4+\varepsilon$ fraction of the entries of the matrix are shaded

- We say that " x is below threshold" if the following is true

$$
\operatorname{Pr}\left[r \sim U_{\{0,1\}^{n}}: \mathcal{A}^{*}(f(x), r)=\langle x, r\rangle\right]<\frac{3}{4}+\frac{\varepsilon}{2}
$$

- This is same as saying that the row corresponding to x is shaded at $<\frac{3}{4}+\frac{\varepsilon}{2}$ fraction of entries
- Suppose all x are below threshold.
- Then every row is shaded $<\frac{3}{4}+\frac{\varepsilon}{2}$ fraction of entries
- Therefore, the whole matrix is shaded $<\frac{3}{4}+\frac{\varepsilon}{2}$ fraction of entries
- Suppose all x are below threshold; except one x
- Then $\left(2^{n}-1\right)$ rows are shaded $<\frac{3}{4}+\frac{\varepsilon}{2}$ fraction of entries, and one row is shaded $\leqslant 1$ fraction of entries
- Therefore, the whole matrix is shaded $<\frac{2^{n}-1}{2^{n}}\left(\frac{3}{4}+\frac{\varepsilon}{2}\right)+\frac{1}{2^{n}} \cdot 1=\left(\frac{3}{4}+\frac{\varepsilon}{2}\right)+\frac{1}{2^{n}} \cdot\left(\frac{1}{4}-\frac{\varepsilon}{2}\right)$ fraction of entries
- Suppose all (except $\alpha 2^{n}$) x are below threshold
- Then $\left(2^{n}-\alpha 2^{n}\right)$ rows are shaded $<\frac{3}{4}+\frac{\varepsilon}{2}$ fraction of entries, and $\alpha 2^{n}$ rows are shaded $\leqslant 1$ fraction of entries
- Therefore, the whole matrix is shaded $\left(\frac{3}{4}+\frac{\varepsilon}{2}\right)+\alpha \cdot\left(\frac{1}{4}-\frac{\varepsilon}{2}\right)$ fraction of entries
- Note that if $\alpha<\varepsilon / 2$ then the matrix is shaded at $<\left(\frac{3}{4}+\frac{\varepsilon}{2}\right)+\alpha \cdot\left(\frac{1}{4}-\frac{\varepsilon}{2}\right)<\left(\frac{3}{4}+\frac{\varepsilon}{2}\right)+(\varepsilon / 2) \cdot 1=\frac{3}{4}+\varepsilon$
- This contradicts the fact that the matrix is shaded at $\geqslant \frac{3}{4}+\varepsilon$ fraction of entries
- So, it must be the case that $\alpha \geqslant(\varepsilon / 2)$

Using G to Invert

For any $x \in G$, we have the following properties:

- $\operatorname{Pr}_{r \sim U_{\{0,1\}^{n}}}\left[\mathcal{A}^{*}(f(x), r)=\langle x, r\rangle\right] \geqslant \frac{3}{4}+\frac{\varepsilon}{2}$
- $\operatorname{Pr}_{r \sim U_{\{0,1\}^{n}}}\left[\mathcal{A}^{*}\left(f(x), r+e_{i}\right)=\left\langle x, r+e_{i}\right\rangle\right] \geqslant \frac{3}{4}+\frac{\varepsilon}{2}$, for all e_{i}
- Therefore, by union bound, we have

$$
\operatorname{Pr}_{r \sim U_{\{0,1\}^{n}}}\left[\mathcal{A}^{*}(f(x), r)+\mathcal{A}^{*}\left(f(x), r+e_{i}\right)=\left\langle x, e_{i}\right\rangle\right] \geqslant \frac{1}{2}+\varepsilon
$$

Consider the following algorithm $\mathcal{B}(y, i)$

- Let $m=\operatorname{poly}(n / \varepsilon)$
- For $r^{(1)}, \ldots, r^{(m)} \sim U_{\{0,1\}^{n}}$ compute

$$
b^{(k)}=\mathcal{A}^{*}\left(f(x), r^{(k)}\right)+\mathcal{A}^{*}\left(f(x), r^{(k)}+e_{i}\right)
$$

- Output the majority of $\left\{b^{(1)}, \ldots, b^{(m)}\right\}$

For a suitable polynomial m, the probability that $\mathcal{B}(y, i)$ outputs x_{i} (when $x \in G$), is at least $\left(1-2^{n}\right)$ [This part uses Chernoff Bound]

Consider the following algorithm $\widetilde{\mathcal{A}}(y)$

- Output $(\mathcal{B}(y, 1), \ldots, \mathcal{B}(y, n))$

For $x \in G$, the probability that $\widetilde{\mathcal{A}}(y)$ outputs x is at least $1-n \cdot 2^{-n} \geqslant 1 / 2$ (using union bound) So, $\widetilde{\mathcal{A}}$ inverts all y with probability $1 / 2$, if $x \in G$. Therefore, $\widetilde{\mathcal{A}}$ successfully inverts y with probability at least $\frac{|G|}{2^{n}} \cdot \frac{1}{2} \geqslant \varepsilon / 4$

