Lecture 11: Using and Constructing PRG

Lecture 11: Using and Constructing PRG

э

Suppose $G_{n,\ell}$: $\{0,1\}^n \to \{0,1\}^\ell$ be a PRG. Consider the encryption scheme (Gen, Enc, Dec)

- Gen (1^n) outputs sk $\sim U_{\{0,1\}^n}$
- $\mathsf{Enc}_{\mathsf{sk}}(m)$ outputs $m + \mathcal{G}_{n,\ell}(\mathsf{sk})$, where $m \in \{0,1\}^\ell$
- $Dec_{sk}(c)$ outputs $c G_{n,\ell}(sk)$

- The security game is defined between an honest challenger and any arbitrary efficient adversary $\mathcal A$
- The adversary $\mathcal A$ sends two messages $(m^{(0)}, m^{(1)})$ of same length to the honest challenger $\mathcal H$
- The honest challenge \mathcal{H} samples sk = Gen(1ⁿ), picks $b \stackrel{s}{\leftarrow} \{0, 1\}$, and sends $c = \text{Enc}_{sk}(m^{(b)})$ to the adversary \mathcal{A}
- The adversary ${\cal A}$ replies back with a bit \widetilde{b}
- The honest challenger outputs z = 1 if and only if $b = \widetilde{b}$

An encryption scheme is computationally secure if there exists a negligible function ε such that $\frac{1}{2} - \varepsilon \leq \Pr[z = 1] \leq \frac{1}{2} + \varepsilon$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

$\mathsf{PRG} \implies \mathsf{Our} \ \mathsf{Encryption} \ \mathsf{Scheme} \ \mathsf{is} \ \mathsf{Secure}$

- We shall prove the contrapositive
- Suppose there exists an efficient adversary \mathcal{A}^* that can ensure $\Pr[z=1] > \frac{1}{2} + \frac{1}{n^c}$, for a constant c > 0
- Our task is to construct an efficient adversary $\widetilde{\mathcal{A}}$ that can distinguish the output of $G_{n,\ell}(U_{\{0,1\}^n})$ from $U_{\{0,1\}^\ell}$
- Following is the code for $\widetilde{\mathcal{A}}$ when it receives a sample $s \in \{0,1\}^{\ell}$:
 - Instead of using $G_{n,\ell}(sk)$ as the mask in the encryption algorithm, use s as the mask
- Prove that this adversary can distinguish the output of $G_{n,\ell}(U_{\{0,1\}^n})$ from $U_{\{0,1\}^\ell}$. Hint: Note that if $s \sim U_{\{0,1\}^\ell}$ then $\Pr[z=1] = \frac{1}{2}$ (why?); and if $s \sim G(U_{\{0,1\}^n})$ then $\Pr[z=1] > \frac{1}{2} + \frac{1}{n^c}$ (why?).

- It is known that one-way functions, i.e., functions that are easy to compute but hard to invert, are <u>necessary</u> to construct PRGs
- It has also been shown that one-way functions <u>suffice</u> to construct PRGs
- In this course, we will see a construction of PRG from one-way permutations (which is slightly more structured that one-way functions)

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

Definition (One-way Function)

A function $f: \{0,1\}^n \to \{0,1\}^n$ is a one-way function if for any arbitrary efficient adversary \mathcal{A} , there exists a negligible ε such that the following holds:

$$\Pr[x \sim U_{\{0,1\}^n}, y = f(x) \colon \mathcal{A}(y) \in f^{-1}(y)] \leqslant \varepsilon$$

Intuition: For a randomly sampled x, any efficient adversary A is unable to find a pre-image of y.

イロト イポト イヨト イヨト

Definition (One-way Permutation)

A function $f: \{0,1\}^n \to \{0,1\}^n$ is a one-way permutation if it is a permutation (i.e., a bijection) and a one-way function.

Comment: We prefer to have secure constructions based on OWFs, if possible, instead of OWPs

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Example Reduction

Claim

Let $f_n: \{0,1\}^n \to \{0,1\}^n$ be a one-way permutation. Prove that $g_n: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n \times \{0,1\}^n$ defined by $g_n(x,r) = (f_n(x),r)$ is also a one-way permutation.

- Proof that g_n is a permutation: Suppose g(x', r') = g(x'', r'') = (y, r) such that $(x', r') \neq (x'', r'')$. Then, note that r' = r'' = r. This implies that $f_n(x') = f_n(x'') = y$ such that $x' \neq x''$. This violates the assumption that f_n is a permutation.
- One-way-ness: Suppose A^{*} is able to invert g_n with probability 1/n^c. Then, consider the adversary à that on input y ∈ {0,1}ⁿ does the following. It samples r ~ U_{{0,1}ⁿ} and outputs A^{*}(y, r). Prove that this successfully inverts f_n with 1/poly probability.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (Hardcore Predicate)

Let $f_n: \{0,1\}^n \to \{0,1\}^n$ be a OWF. A function $h_n: \{0,1\}^n \to \{0,1\}$ is a hardcore predicate for f_n if for any arbitrary efficient adversary \mathcal{A} there exists a negligible function ε such that the following holds.

$$\Pr[x \sim U_{\{0,1\}^n} \colon \mathcal{A}(f(x)) = h(x)] \leqslant rac{1}{2} + arepsilon$$

Intuition: Even given f(x), for a randomly sampled x, any efficient adversary cannot predict the bit h(x)

< ロ > < 同 > < 回 > < 回 >

PRG Construction

- Suppose $f_n \colon \{0,1\}^n \to \{0,1\}^n$ is a OWP
- Suppose $h_n \colon \{0,1\}^n \to \{0,1\}$ is a hardcore predicate for f_n
- Consider the function $G_n : \{0,1\}^n \to \{0,1\}^{n+1}$ defined as follows: $G_n(x) = (f_n(x), h_n(x))$

Claim

 G_n is a PRG

- Note that f_n(x) is uniformly random string when x ~ U_{{0,1}ⁿ}, because f_n is a permutation. So, every bit of f_n(x) is unpredictable.
- The last bit $h_n(x)$ is unpredictable given $f_n(x)$, because of the definition of hardcore-bit
- By the next-bit unpredictability definition of PRG, we have shown that G_n is a PRG