Lecture 10: Examples of Hybrid Arguments

Continuing With Equivalence of PRG Definitions

- We are interested in showing the other direction of the proof (2) \Longrightarrow (1)
- We consider the contrapositive: $\neg(1) \Longrightarrow \neg(2)$
- $\neg(1)$ is equivalent to: There exists an efficient adversary \mathcal{A}^{*} and constant c such that

$$
\operatorname{Pr}\left[\mathcal{A}^{*}\left(G\left(U_{\{0,1\}^{n}}\right)\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{*}\left(U_{\{0,1\}^{n+\ell}}\right)=1\right]>1 / n^{c}
$$

- Our aim is to show $\neg(2)$: This is equivalent to constructing an efficient adversary $\widetilde{\mathcal{A}}$, and showing the existence of $\widetilde{i} \in\{1, \ldots, n+\ell\}$ and constant d such that the distribution $G\left(u_{\{0,1\}^{n}}\right)_{\leqslant \tilde{i}}$ is not next-bit unpredictable and the advantage of distinguishing is at least $1 / n^{d}$
- Consider $Y_{1} \ldots Y_{n+\ell}=G\left(U_{\{0,1\}^{n}}\right)$ and $U_{1} \ldots U_{n+\ell}=U_{\{0,1\}^{n+\ell}}$
- For $i \in\{0,1, \ldots, n+\ell\}$, let $X^{(i)}$ be the distribution:

$$
\left(Y_{1}, \ldots, Y_{n+\ell-i}, U_{n+\ell-i+1}, \ldots, U_{n+\ell}\right)
$$

- Note that: $X^{(0)}=Y_{1} \ldots Y_{n+\ell}$ and $X^{(n+\ell)}=U_{1} \ldots U_{n+\ell}$
- We know that $\operatorname{Pr}\left[\mathcal{A}^{*}\left(X^{(0)}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{*}\left(X^{(n+\ell)}=1\right] \geqslant 1 / n^{c}\right.$
- So, there exists $i^{*} \in\{1, \ldots, n+\ell\}$ such that

$$
\operatorname{Pr}\left[\mathcal{A}^{*}\left(X^{\left(i^{*}-1\right)}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{*}\left(X^{\left(i^{*}\right)}=1\right)\right] \geqslant \frac{1}{n^{c}(n+\ell)}
$$

- The last step is known as the "Hybrid-argument." Prove: Using triangle inequality prove the conclusion made in the previous step.
- Let us take a closer look at $X^{\left(i^{*}-1\right)}$ and $X^{\left(i^{*}\right)}$ distributions

$$
\begin{aligned}
X^{\left(i^{*}-1\right)} & =\left(Y_{1}, \ldots, Y_{n+\ell-i^{*}}, Y_{n+\ell-i^{*}+1}, U_{n+\ell-i^{*}+2}, \ldots, U_{n+\ell}\right) \\
X^{\left(i^{*}\right)} & =\left(Y_{1}, \ldots, Y_{n+\ell-i^{*}}, U_{n+\ell-i^{*}+1}, U_{n+\ell-i^{*}+2}, \ldots, U_{n+\ell}\right)
\end{aligned}
$$

The only thing that changes is the $\left(n+\ell-i^{*}+1\right)$-th entry

- Our adversary $\widetilde{\mathcal{A}}$ will predict the $\left(n+\ell-i^{*}+1\right)$-th bit
- So, we choose $\widetilde{i}=\left(n+\ell-i^{*}+1\right)$
- Note that \mathcal{A}^{*} outputs 1 with higher probability when the \tilde{i}-th bit is sampled according to $Y_{\widetilde{i}}$ instead of $U_{\tilde{i}}$. We want to leverage this advantage in the next-bit unpredictability experiment
- Recall the next-bit unpredictability experiment for $i=\tilde{i}$. The adversary receives $\alpha \sim Y_{1}, \ldots, Y_{n+\ell-i^{*}}$. If $b=0$ we have $\beta \sim Y_{n+\ell-i^{*}+1}$, otherwise (if $b=1$) we have $\beta \sim U_{\{0,1\}}$
- Code of $\widetilde{\mathcal{A}}$ on input (α, β)
- Sample $u_{\tilde{i}+1} \ldots u_{n+\ell} \sim U_{\{0,1\}^{n+\ell-i}}$
- Let $c=\mathcal{A}^{*}\left(\alpha, \beta, u_{i+1} \ldots u_{n+\ell}\right)$
- If $c=1$, set $\widetilde{b}=0$; otherwise $\widetilde{b}=1$
- Return b
- Prove: The advantage of $\widetilde{b}=b$ is $>\frac{1}{2 n^{c}(n+\ell)}$.
- Set d such that $\frac{1}{2 n^{c}(n+\ell)} \geqslant \frac{1}{n^{d}}$. This completes the proof.

One-bit Stretch PRG implies PRG

Definition (One-bit Stretch PRG)

A family of function $G_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ is called a one-bit stretch PRG if there exists a negligible function $\varepsilon(n)$ such that:

$$
G\left(U_{\{0,1\}^{n}}\right) \approx_{\varepsilon}^{(c)} U_{\{0,1\}^{n+1}}
$$

Prove using hybrid argument that the function $F_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{n+\ell}$ defined below:

$$
F_{n}(s)=G_{n+\ell-1}\left(\cdots G_{n+1}\left(G_{n}(s)\right) \cdots\right)
$$

is a PRG with indistinguishability $\varepsilon(n)+\varepsilon(n+1)+\cdots+\varepsilon(n+\ell-1)$

One-bit Stretch PRG implies PRG

- Let $H_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{n+\ell}$ be a function defined by the following algorithm: $H_{n}(s)$ is calculated as follows
- $s^{(0)}=s$
- For $i \in\{1, \ldots, n+\ell\}$: Let $G_{n}\left(s^{(i-1)}\right)=\left(s^{(i)}, b_{i}\right)$, where

$$
s^{(i)} \in\{0,1\}^{n} \text { and } b_{i} \in\{0,1\}
$$

- Output $\left(b_{1}, \ldots, n_{n+\ell}\right)$
- Prove using hybrid argument that H_{n} is a PRG with indistinguishability $(n+\ell) \varepsilon(n)$
- Think: How to use this PRG to construct encryption scheme for multiple arbitrary length messages (assume that the sender and the receiver can maintain an n-bit secret state)

