Lecture 09: Next-bit Unpredictability

Lecture 09: Next-bit Unpredictability

▶ < 둘 ▶ < 둘 ▶ .

Consider two distributions X and Y over the sample space Ω . The distributions X and Y are ε -indistinguishable from each other if:

 \bullet For all algorithms $\mathcal{A}\colon\Omega\to\{0,1\}$ the following holds

$$|\Pr[\mathcal{A}(X) = 1] - \Pr[\mathcal{A}(Y) = 1]| \leqslant \varepsilon$$

• This is also equivalent to the following: For all algorithms $\mathcal{A}\colon\Omega\to\{0,1\}$ the following holds

$$\mathrm{SD}\left(\mathcal{A}(X),\mathcal{A}(Y)\right)\leqslant\varepsilon$$

- Represented by $X \approx_{\varepsilon} Y$
- Think: Why are these equivalent?

イロト イポト イヨト イヨト

Definition

The distributions X and Y over the sample space Ω are ε -computationally indistinguishable, if: For all efficient algorithms $\mathcal{A}: \Omega \to \{0, 1\}$ the following holds

 $\mathrm{SD}\left(\mathcal{A}(X),\mathcal{A}(Y)\right)\leqslant \varepsilon$

Represented by $X \approx_{\varepsilon}^{(c)} Y$

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition (Negligible)

A function $\varepsilon \colon \mathbb{N} \to \mathbb{R}$ is a negligible function if for all constant c, (eventually) we have $\varepsilon(n) \leq 1/n^c$.

- The term "eventually" can be ignored for this class
- Intuition: A negligible function is smaller than all inverse-polynomial functions
- Negligible function examples: $\frac{1}{2^n}, \frac{1}{2^{\sqrt{n}}}, \frac{1}{2^{\log^2 n}}$
- Non-negligible function examples: $\frac{1}{n^{100}}, \frac{1}{2^{\log n}}$

・ロッ ・雪 ・ ・ ヨ ・ ・ 日 ・

Definition (Pseudo-random Generators)

An efficient function $G: \{0,1\}^n \to \{0,1\}^{n+\ell}$ is a pseudo-random generator, if $\ell \ge 1$ and there exists a negligible ε such that

$$\mathrm{SD}\left(G(U_{\{0,1\}^n}), U_{\{0,1\}^{n+\ell}}
ight)\leqslant arepsilon$$

- We write ε instead of $\varepsilon(n)$ for brevity
- Intuition: Any computationally bounded adversary cannot distinguish the output of *G* from a uniform distribution

・ 同 ト ・ ヨ ト ・ ヨ ト

A string $y_1 \dots y_i$ sampled according to a distribution X has next-bit unpredictability if the following is satisfied.

Consider the game between an honest challenger and an arbitrary efficient adversary $\ensuremath{\mathcal{A}}$

- The honest challenge *H* samples ≡ y₁... y_i ~ X. Let α = y₁... y_{i-1} and sample b ^{\$} {0,1}. If b = 0, define β = y_i; otherwise define β ^{\$} {0,1}. Send (α, β) to the adversary *A*.
- The adversary replies back with a bit \tilde{b} .
- The adversary wins the game if $b = \tilde{b}$. The honest challenger \mathcal{H} sets z = 1 if $b = \tilde{b}$; otherwise z = 0. Output z.
- The advantage of \mathcal{A} is negligible, i.e. there is a negligible function ε such that $\left|\Pr[z=1] \frac{1}{2}\right| \leq \varepsilon$

- Let X be a distribution over the sample space $\{0,1\}^n$
- We use $X_{\leq i}$ to represent the distribution of first *i*-bits of X
- In particular, $G(U_n)_{\leqslant i}$ represents the distribution of the first *i*-bits of the output of the function *G* with *n*-bit uniformly random string as input.

Definition (Next-bit Unpredictable PRG)

An efficient function $G: \{0,1\}^n \to \{0,1\}^{n+\ell}$, for $\ell \ge 1$, is a next-bit unpredictable PRG if, for all $i \in \{1, \ldots, n+\ell\}$, the distribution $G(U_n)_{\le i}$ is next-bit unpredictable.

Theorem

For an efficient function $G: \{0,1\}^n \to \{0,1\}^{n+\ell}$, where $\ell \ge 1$, the following two statements are equivalent:

• For arbitrary efficient \mathcal{A} , there exists a negligible ε such that $\operatorname{SD}\left(\mathcal{A}(G(U_{\{0,1\}^n})), \mathcal{A}(U_{\{0,1\}^{n+\ell}})\right) \leqslant \varepsilon$

Sor every i ∈ {1,..., n + ℓ} the distribution G(U_{{0,1}ⁿ})_{≤i} is next-bit unpredictable

• To show this theorem, we will have to show "(1) \implies (2)" and "(2) \implies (1)"

Lecture 09: Next-bit Unpredictability

イロト イポト イヨト イヨト

$(1) \implies (2)$

- This direction should be easy. We expect that a pseudo-random string should definitely satisfy the condition that "given its first (i 1)-bits the next bit is completely unpredictable" (because uniformly random bits have this property as well)
- We will prove the contrapositive: " $\neg(2) \implies \neg(1)$ "
- Mathematically, $\neg(2)$ gives us: There exists *i* such that $G(U_{\{0,1\}^n})_{\leqslant i}$ is next-bit predictable. That is, there exists an adversary \mathcal{A}^* that has advantage $1/n^c$ in the next-bit unpredictability experiment.
- Target Mathematical Statement: We need to show $\neg(1)$. This is equivalent to constructing an adversary $\widetilde{\mathcal{A}}$ such that $\mathrm{SD}\left(\widetilde{\mathcal{A}}(\mathcal{G}(U_{\{0,1\}^n})), \widetilde{\mathcal{A}}(U_{\{0,1\}^{n+\ell}})\right)$ is at least an inverse polynomial.

・ロッ ・雪 ・ ・ ヨ ・

Adversary $\widetilde{\mathcal{A}}$ construction: On input $y_1 \dots y_{n+\ell}$ the adversary $\widetilde{\mathcal{A}}$ does the following:

- Define $\alpha = y_1 \dots y_{i-1}$
- Pick $b \stackrel{\$}{\leftarrow} \{0,1\}$
- If b = 0, set $\beta = y_i$; otherwise $\beta \stackrel{\$}{\leftarrow} \{0, 1\}$.
- Send (α,β) to \mathcal{A}^*
- Receive \widetilde{b} from \mathcal{A}^*
- Output z = 1 if $b = \tilde{b}$; otherwise z = 0.

・ 同下 ・ 国下 ・ 国下

Suppose $y_1 \dots y_{n+\ell}$ is sampled from $U_{n+\ell}$

- For every fixed value of α , the value of β is a uniform independent random bit irrespective of whether b = 0 or b = 1
- So, in this case, $\Pr[z=1]=1/2$
- The output of $\widetilde{\mathcal{A}}$ is identical to the $U_{\{0,1\}}$ random variable

• Equivalently
$$\widetilde{\mathcal{A}}(U_{\{0,1\}^{n+\ell}}) = U_{\{0,1\}}$$

イロト イポト イヨト イヨト

$(1) \implies (2)$

Suppose $y_1 \ldots y_{n+\ell}$ is sampled from $G(U_n)$

- In this case, the output of $\widetilde{\mathcal{A}}$ is identical to the output of the next-bit unpredictability experiment between the honest challenger \mathcal{H} and the adversary \mathcal{A}^*
- In this case, we know that the advantage of \mathcal{A}^* is $1/n^c$
- That is, we know that $\Pr[z=1] = \frac{1}{2} + 1/n^c$
- The output of $\widetilde{\mathcal{A}}$ is a distribution that outputs 0 with probability $\frac{1}{2} 1/n^c$ and outputs 1 with probability $\frac{1}{2} + 1/n^c$. For brevity we will call it the $(\frac{1}{2} 1/n^c, \frac{1}{2} + 1/n^c)$ distribution.
- Equivalently $\widetilde{\mathcal{A}}(G(U_{\{0,1\}^n})) = (\frac{1}{2} 1/n^c, \frac{1}{2} + 1/n^c)$

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Now, we have

$$\begin{split} &\mathrm{SD}\left(\widetilde{\mathcal{A}}(G(U_{\{0,1\}^n})),\widetilde{\mathcal{A}}(U_{\{0,1\}^{n+\ell}})\right) = \mathrm{SD}\left(\left(\frac{1}{2} - 1/n^c, \frac{1}{2} + 1/n^c\right), U_{\{0,1\}}\right) \\ &= 1/n^c \end{split}$$

So, we have shown that the efficient adversary $\widetilde{\mathcal{A}}$ can distinguish the output of a PRG from a uniform distribution. This completes the proof in one direction.

(日本) (日本) (日本)