Lecture 09: Next-bit Unpredictability

Consider two distributions X and Y over the sample space Ω. The distributions X and Y are ε-indistinguishable from each other if:

- For all algorithms $\mathcal{A}: \Omega \rightarrow\{0,1\}$ the following holds

$$
|\operatorname{Pr}[\mathcal{A}(X)=1]-\operatorname{Pr}[\mathcal{A}(Y)=1]| \leqslant \varepsilon
$$

- This is also equivalent to the following: For all algorithms $\mathcal{A}: \Omega \rightarrow\{0,1\}$ the following holds

$$
\mathrm{SD}(\mathcal{A}(X), \mathcal{A}(Y)) \leqslant \varepsilon
$$

- Represented by $X \approx_{\varepsilon} Y$
- Think: Why are these equivalent?

Computational Indistinguishable

Definition

The distributions X and Y over the sample space Ω are ε-computationally indistinguishable, if: For all efficient algorithms $\mathcal{A}: \Omega \rightarrow\{0,1\}$ the following holds

$$
\mathrm{SD}(\mathcal{A}(X), \mathcal{A}(Y)) \leqslant \varepsilon
$$

Represented by $X \approx_{\varepsilon}^{(c)} Y$

Negligible Functions

Definition (Negligible)

A function $\varepsilon: \mathbb{N} \rightarrow \mathbb{R}$ is a negligible function if for all constant c, (eventually) we have $\varepsilon(n) \leqslant 1 / n^{c}$.

- The term "eventually" can be ignored for this class
- Intuition: A negligible function is smaller than all inverse-polynomial functions
- Negligible function examples: $\frac{1}{2^{n}}, \frac{1}{2^{\sqrt{n}}}, \frac{1}{2^{\log ^{2} n}}$
- Non-negligible function examples: $\frac{1}{n^{100}}, \frac{1}{2^{\log n}}$

Definition (Pseudo-random Generators)

An efficient function $G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+\ell}$ is a pseudo-random generator, if $\ell \geqslant 1$ and there exists a negligible ε such that

$$
\operatorname{SD}\left(G\left(U_{\{0,1\}^{n}}\right), U_{\{0,1\}^{n+\ell}}\right) \leqslant \varepsilon
$$

- We write ε instead of $\varepsilon(n)$ for brevity
- Intuition: Any computationally bounded adversary cannot distinguish the output of G from a uniform distribution

Next-bit Unpredictability

A string $y_{1} \ldots y_{i}$ sampled according to a distribution X has next-bit unpredictability if the following is satisfied.
Consider the game between an honest challenger and an arbitrary efficient adversary \mathcal{A}

- The honest challenge \mathcal{H} samples $\equiv y_{1} \ldots y_{i} \sim X$. Let $\alpha=y_{1} \ldots y_{i-1}$ and sample $b \stackrel{\leftarrow}{\leftarrow}\{0,1\}$. If $b=0$, define $\beta=y_{i}$; otherwise define $\beta \stackrel{\varsigma}{\leftarrow}\{0,1\}$. Send (α, β) to the adversary \mathcal{A}.
- The adversary replies back with a bit \widetilde{b}.
- The adversary wins the game if $b=\widetilde{b}$. The honest challenger \mathcal{H} sets $z=1$ if $b=\widetilde{b}$; otherwise $z=0$. Output z.
- The advantage of \mathcal{A} is negligible, i.e. there is a negligible function ε such that $\left|\operatorname{Pr}[z=1]-\frac{1}{2}\right| \leqslant \varepsilon$

Next-bit Unpredictable PRG

- Let X be a distribution over the sample space $\{0,1\}^{n}$
- We use $X_{\leqslant i}$ to represent the distribution of first i-bits of X
- In particular, $G\left(U_{n}\right)_{\leqslant i}$ represents the distribution of the first i-bits of the output of the function G with n-bit uniformly random string as input.

Definition (Next-bit Unpredictable PRG)

An efficient function $G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+\ell}$, for $\ell \geqslant 1$, is a next-bit unpredictable PRG if, for all $i \in\{1, \ldots, n+\ell\}$, the distribution $G\left(U_{n}\right)_{\leqslant i}$ is next-bit unpredictable.

Equivalence of PRG Definitions

Theorem

For an efficient function $G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+\ell}$, where $\ell \geqslant 1$, the following two statements are equivalent:
(1) For arbitrary efficient \mathcal{A}, there exists a negligible ε such that $\operatorname{SD}\left(\mathcal{A}\left(G\left(U_{\{0,1\}^{n}}\right)\right), \mathcal{A}\left(U_{\{0,1\}^{n+\ell}}\right)\right) \leqslant \varepsilon$
(2) For every $i \in\{1, \ldots, n+\ell\}$ the distribution $G\left(U_{\{0,1\}^{n}}\right)_{\leqslant i}$ is next-bit unpredictable

- To show this theorem, we will have to show " $(1) \Longrightarrow(2)$ " and " 2) $\Longrightarrow(1)$ "
- This direction should be easy. We expect that a pseudo-random string should definitely satisfy the condition that "given its first $(i-1)$-bits the next bit is completely unpredictable" (because uniformly random bits have this property as well)
- We will prove the contrapositive: " $\neg(2) \Longrightarrow \neg(1)$ "
- Mathematically, $\neg(2)$ gives us: There exists i such that $G\left(U_{\{0,1\}^{n}}\right)_{\leqslant i}$ is next-bit predictable. That is, there exists an adversary \mathcal{A}^{*} that has advantage $1 / n^{c}$ in the next-bit unpredictability experiment.
- Target Mathematical Statement: We need to show $\neg(1)$. This is equivalent to constructing an adversary $\widetilde{\mathcal{A}}$ such that $\operatorname{SD}\left(\widetilde{\mathcal{A}}\left(G\left(U_{\{0,1\}^{n}}\right)\right), \widetilde{\mathcal{A}}\left(U_{\{0,1\}^{n+\ell}}\right)\right)$ is at least an inverse polynomial.

Adversary $\widetilde{\mathcal{A}}$ construction: On input $y_{1} \ldots y_{n+\ell}$ the adversary $\widetilde{\mathcal{A}}$ does the following:

- Define $\alpha=y_{1} \ldots y_{i-1}$
- Pick $b{ }^{\varsigma}\{0,1\}$
- If $b=0$, set $\beta=y_{i}$; otherwise $\beta \stackrel{\S}{\leftarrow}\{0,1\}$.
- Send (α, β) to \mathcal{A}^{*}
- Receive \widetilde{b} from \mathcal{A}^{*}
- Output $z=1$ if $b=\widetilde{b}$; otherwise $z=0$.

Suppose $y_{1} \ldots y_{n+\ell}$ is sampled from $U_{n+\ell}$

- For every fixed value of α, the value of β is a uniform independent random bit irrespective of whether $b=0$ or $b=1$
- So, in this case, $\operatorname{Pr}[z=1]=1 / 2$
- The output of $\tilde{\mathcal{A}}$ is identical to the $U_{\{0,1\}}$ random variable
- Equivalently $\widetilde{\mathcal{A}}\left(U_{\{0,1\}^{n+\ell}}\right)=U_{\{0,1\}}$

Suppose $y_{1} \ldots y_{n+\ell}$ is sampled from $G\left(U_{n}\right)$

- In this case, the output of $\widetilde{\mathcal{A}}$ is identical to the output of the next-bit unpredictability experiment between the honest challenger \mathcal{H} and the adversary \mathcal{A}^{*}
- In this case, we know that the advantage of \mathcal{A}^{*} is $1 / n^{c}$
- That is, we know that $\operatorname{Pr}[z=1]=\frac{1}{2}+1 / n^{c}$
- The output of $\widetilde{\mathcal{A}}$ is a distribution that outputs 0 with probability $\frac{1}{2}-1 / n^{c}$ and outputs 1 with probability $\frac{1}{2}+1 / n^{c}$. For brevity we will call it the $\left(\frac{1}{2}-1 / n^{c}, \frac{1}{2}+1 / n^{c}\right)$ distribution.
- Equivalently $\widetilde{\mathcal{A}}\left(G\left(U_{\{0,1\}^{n}}\right)\right)=\left(\frac{1}{2}-1 / n^{c}, \frac{1}{2}+1 / n^{c}\right)$

Now, we have

$$
\begin{aligned}
\operatorname{SD}\left(\widetilde{\mathcal{A}}\left(G\left(U_{\{0,1\}^{n}}\right)\right), \widetilde{\mathcal{A}}\left(U_{\{0,1\}^{n+\ell}}\right)\right) & =\operatorname{SD}\left(\left(\frac{1}{2}-1 / n^{c}, \frac{1}{2}+1 / n^{c}\right), U_{\{0,1\}}\right) \\
& =1 / n^{c}
\end{aligned}
$$

So, we have shown that the efficient adversary $\widetilde{\mathcal{A}}$ can distinguish the output of a PRG from a uniform distribution. This completes the proof in one direction.

